These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23761434)

  • 21. Engineering a Functional Small RNA Negative Autoregulation Network with Model-Guided Design.
    Hu CY; Takahashi MK; Zhang Y; Lucks JB
    ACS Synth Biol; 2018 Jun; 7(6):1507-1518. PubMed ID: 29733627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation.
    Dawid A; Cayrol B; Isambert H
    Phys Biol; 2009 Jul; 6(2):025007. PubMed ID: 19571368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modular, multi-input transcriptional logic gating with orthogonal LacI/GalR family chimeras.
    Shis DL; Hussain F; Meinhardt S; Swint-Kruse L; Bennett MR
    ACS Synth Biol; 2014 Sep; 3(9):645-51. PubMed ID: 25035932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic logic circuits using RNA aptamer against T7 RNA polymerase.
    Kim J; Quijano JF; Kim J; Yeung E; Murray RM
    Biotechnol J; 2022 Mar; 17(3):e2000449. PubMed ID: 33813787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of Ribocomputing Devices for Complex Cellular Logic.
    McCutcheon G; Chaudhary S; Hong S; Park D; Kim J; Green AA
    Methods Mol Biol; 2022; 2518():65-86. PubMed ID: 35666439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells.
    Rodrigo G; Landrain TE; Jaramillo A
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15271-6. PubMed ID: 22949707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Programmed cell death by hok/sok of plasmid R1: processing at the hok mRNA 3'-end triggers structural rearrangements that allow translation and antisense RNA binding.
    Franch T; Gultyaev AP; Gerdes K
    J Mol Biol; 1997 Oct; 273(1):38-51. PubMed ID: 9367744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An abundance of RNA regulators.
    Storz G; Altuvia S; Wassarman KM
    Annu Rev Biochem; 2005; 74():199-217. PubMed ID: 15952886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design rules of synthetic non-coding RNAs in bacteria.
    Lee YJ; Moon TS
    Methods; 2018 Jul; 143():58-69. PubMed ID: 29309838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of FinP antisense RNA from F-like plasmids: the RNA-binding protein, FinO, protects FinP from ribonuclease E.
    Jerome LJ; van Biesen T; Frost LS
    J Mol Biol; 1999 Jan; 285(4):1457-73. PubMed ID: 9917389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator.
    Novick RP; Iordanescu S; Projan SJ; Kornblum J; Edelman I
    Cell; 1989 Oct; 59(2):395-404. PubMed ID: 2478296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production.
    Kim JY; Cha HJ
    Biotechnol Bioeng; 2003 Sep; 83(7):841-53. PubMed ID: 12889024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli.
    Cress BF; Jones JA; Kim DC; Leitz QD; Englaender JA; Collins SM; Linhardt RJ; Koffas MA
    Nucleic Acids Res; 2016 May; 44(9):4472-85. PubMed ID: 27079979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Programmable T7-based synthetic transcription factors.
    Hussey BJ; McMillen DR
    Nucleic Acids Res; 2018 Oct; 46(18):9842-9854. PubMed ID: 30169636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of loop size in antisense and target RNAs on the efficiency of antisense RNA control.
    Hjalt T; Wagner EG
    Nucleic Acids Res; 1992 Dec; 20(24):6723-32. PubMed ID: 1282705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antisense transcription as a tool to tune gene expression.
    Brophy JA; Voigt CA
    Mol Syst Biol; 2016 Jan; 12(1):854. PubMed ID: 26769567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and Evaluation of Synthetic RNA-Based Incoherent Feed-Forward Loop Circuits.
    Hong S; Jeong D; Ryan J; Foo M; Tang X; Kim J
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors.
    Delihas N; Forst S
    J Mol Biol; 2001 Oct; 313(1):1-12. PubMed ID: 11601842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure.
    Franch T; Petersen M; Wagner EG; Jacobsen JP; Gerdes K
    J Mol Biol; 1999 Dec; 294(5):1115-25. PubMed ID: 10600370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies.
    Meyer S; Chappell J; Sankar S; Chew R; Lucks JB
    Biotechnol Bioeng; 2016 Jan; 113(1):216-25. PubMed ID: 26134708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.