These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23761471)

  • 1. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.
    Salazar VL; Krahe R; Lewis JE
    J Exp Biol; 2013 Jul; 216(Pt 13):2459-68. PubMed ID: 23761471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus.
    Salazar VL; Stoddard PK
    J Exp Biol; 2008 Mar; 211(Pt 6):1012-20. PubMed ID: 18310126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetic constraints on electric signalling in wave-type weakly electric fishes.
    Reardon EE; Parisi A; Krahe R; Chapman LJ
    J Exp Biol; 2011 Dec; 214(Pt 24):4141-50. PubMed ID: 22116756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae).
    Turner CR; Derylo M; de Santana CD; Alves-Gomes JA; Smith GT
    J Exp Biol; 2007 Dec; 210(Pt 23):4104-22. PubMed ID: 18025011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From the intrinsic properties to the functional role of a neuron phenotype: an example from electric fish during signal trade-off.
    Nogueira J; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2380-92. PubMed ID: 23761463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximate and ultimate causes of signal diversity in the electric fish Gymnotus.
    Crampton WG; Rodríguez-Cattáneo A; Lovejoy NR; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2523-41. PubMed ID: 23761477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.
    Kawasaki M; Leonard J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Feb; 203(2):151-162. PubMed ID: 28190119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrosensory and metabolic responses of weakly electric fish to changing water conductivity.
    Wiser SD; Markham MR
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38712896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens.
    Tan EW; Nizar JM; Carrera-G E; Fortune ES
    Behav Brain Res; 2005 Oct; 164(1):83-92. PubMed ID: 16099058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogeny and evolution of electric organs in gymnotiform fish.
    Kirschbaum F; Schwassmann HO
    J Physiol Paris; 2008; 102(4-6):347-56. PubMed ID: 18984049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contextual effects of small environments on the electric images of objects and their brain evoked responses in weakly electric fish.
    Pereira AC; Centurión V; Caputi AA
    J Exp Biol; 2005 Mar; 208(Pt 5):961-72. PubMed ID: 15755894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic.
    Caputi AA; Castelló ME; Aguilera P; Trujillo-Cenóz O
    J Physiol Paris; 2002; 96(5-6):493-505. PubMed ID: 14692497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action potential energetics at the organismal level reveal a trade-off in efficiency at high firing rates.
    Lewis JE; Gilmour KM; Moorhead MJ; Perry SF; Markham MR
    J Neurosci; 2014 Jan; 34(1):197-201. PubMed ID: 24381281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weakly electric fish learn both visual and electrosensory cues in a multisensory object discrimination task.
    Dangelmayer S; Benda J; Grewe J
    J Physiol Paris; 2016 Oct; 110(3 Pt B):182-189. PubMed ID: 27825970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for studying the energetics of sustained high frequency firing.
    Joos B; Markham MR; Lewis JE; Morris CE
    PLoS One; 2018; 13(4):e0196508. PubMed ID: 29708986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE
    J Exp Biol; 2008 May; 211(Pt 10):1657-67. PubMed ID: 18456893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish.
    Sinnett PM; Markham MR
    Horm Behav; 2015 May; 71():31-40. PubMed ID: 25870018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.
    Ramcharitar JU; Tan EW; Fortune ES
    J Neurophysiol; 2006 Nov; 96(5):2319-26. PubMed ID: 16790600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role of synchronicity of neural activity based on dynamic plasticity of synapses in encoding spatiotemporal features of electrosensory stimuli.
    Fujita K; Kashimori Y; Zheng M; Kambara T
    Math Biosci; 2006 May; 201(1-2):113-24. PubMed ID: 16504215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.