These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23761471)

  • 41. Electrocyte physiology: 50 years later.
    Markham MR
    J Exp Biol; 2013 Jul; 216(Pt 13):2451-8. PubMed ID: 23761470
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Species-specific diversity of a fixed motor pattern: the electric organ discharge of Gymnotus.
    Rodríguez-Cattaneo A; Pereira AC; Aguilera PA; Crampton WG; Caputi AA
    PLoS One; 2008 May; 3(5):e2038. PubMed ID: 18461122
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.
    Waddell JC; Rodríguez-Cattáneo A; Caputi AA; Crampton WGR
    J Physiol Paris; 2016 Oct; 110(3 Pt B):164-181. PubMed ID: 27794446
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The evolutionary origins of electric signal complexity.
    Stoddard PK
    J Physiol Paris; 2002; 96(5-6):485-91. PubMed ID: 14692496
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adrenocorticotropic hormone enhances the masculinity of an electric communication signal by modulating the waveform and timing of action potentials within individual cells.
    Markham MR; Stoddard PK
    J Neurosci; 2005 Sep; 25(38):8746-54. PubMed ID: 16177044
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electric organ discharge diversity in the genus Gymnotus: anatomo-functional groups and electrogenic mechanisms.
    Rodríguez-Cattáneo A; Aguilera P; Cilleruelo E; Crampton WG; Caputi AA
    J Exp Biol; 2013 Apr; 216(Pt 8):1501-15. PubMed ID: 23264494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Species differences in group size and electrosensory interference in weakly electric fishes: implications for electrosensory processing.
    Stamper SA; Carrera-G E; Tan EW; Fugère V; Krahe R; Fortune ES
    Behav Brain Res; 2010 Mar; 207(2):368-76. PubMed ID: 19874855
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electric organ morphology of Sternopygus macrurus, a wave-type, weakly electric fish with a sexually dimorphic EOD.
    Mills A; Zakon HH; Marchaterre MA; Bass AH
    J Neurobiol; 1992 Sep; 23(7):920-32. PubMed ID: 1431851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reproductive character displacement and signal ontogeny in a sympatric assemblage of electric fish.
    Crampton WG; Lovejoy NR; Waddell JC
    Evolution; 2011 Jun; 65(6):1650-66. PubMed ID: 21644955
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling signal and background components of electrosensory scenes.
    Chen L; House JL; Krahe R; Nelson ME
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):331-45. PubMed ID: 15800793
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Postnatal brain development of the pulse type, weakly electric gymnotid fish Gymnotus omarorum.
    Iribarne L; Castelló ME
    J Physiol Paris; 2014; 108(2-3):47-60. PubMed ID: 24844821
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Waveform discrimination in a pair of pulse-generating electric fishes.
    Waddell JC; Caputi AA
    J Fish Biol; 2020 Apr; 96(4):1065-1071. PubMed ID: 32077109
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude.
    Markham MR; Kaczmarek LK; Zakon HH
    J Neurophysiol; 2013 Apr; 109(7):1713-23. PubMed ID: 23324315
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energetic cost of communication.
    Stoddard PK; Salazar VL
    J Exp Biol; 2011 Jan; 214(Pt 2):200-5. PubMed ID: 21177941
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predation enhances complexity in the evolution of electric fish signals.
    Stoddard PK
    Nature; 1999 Jul; 400(6741):254-6. PubMed ID: 10421365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Androgen modulates the kinetics of the delayed rectifying K+ current in the electric organ of a weakly electric fish.
    McAnelly ML; Zakon HH
    Dev Neurobiol; 2007 Oct; 67(12):1589-97. PubMed ID: 17562532
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry.
    Arnegard ME; Bogdanowicz SM; Hopkins CD
    Evolution; 2005 Feb; 59(2):324-43. PubMed ID: 15807419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and function of neurons in the complex of the nucleus electrosensorius of Sternopygus and Eigenmannia: diencephalic substrates for the evolution of the jamming avoidance response.
    Green RL; Rose GJ
    Brain Behav Evol; 2004; 64(2):85-103. PubMed ID: 15205544
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish.
    Dunlap KD; DiBenedictis BT; Banever SR
    J Exp Biol; 2010 Jul; 213(Pt 13):2234-42. PubMed ID: 20543122
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamically interacting processes underlie synaptic plasticity in a feedback pathway.
    Oswald AM; Lewis JE; Maler L
    J Neurophysiol; 2002 May; 87(5):2450-63. PubMed ID: 11976382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.