BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 23761473)

  • 1. Electric fish: new insights into conserved processes of adult tissue regeneration.
    Unguez GA
    J Exp Biol; 2013 Jul; 216(Pt 13):2478-86. PubMed ID: 23761473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.
    Weber CM; Martindale MQ; Tapscott SJ; Unguez GA
    PLoS One; 2012; 7(5):e36819. PubMed ID: 22685526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sternopygus macrurus electric organ transcriptome and cell size exhibit insensitivity to short-term electrical inactivity.
    Güth R; Pinch M; Samanta MP; Chaidez A; Unguez GA
    J Physiol Paris; 2016 Oct; 110(3 Pt B):233-244. PubMed ID: 27864094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of myogenic regulatory factors in the muscle-derived electric organ of Sternopygus macrurus.
    Kim JA; Laney C; Curry J; Unguez GA
    J Exp Biol; 2008 Jul; 211(Pt 13):2172-84. PubMed ID: 18552307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of electric organ from muscle precursor in the regenerating tail of a weakly electric teleost: a morphogenetic approach.
    Srivastava CB
    Indian J Exp Biol; 1978 Jul; 16(7):762-7. PubMed ID: 700812
    [No Abstract]   [Full Text] [Related]  

  • 6. Skeletal muscle transformation into electric organ in S. macrurus depends on innervation.
    Unguez GA; Zakon HH
    J Neurobiol; 2002 Nov; 53(3):391-402. PubMed ID: 12382266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes.
    Lavoué S; Miya M; Arnegard ME; Sullivan JP; Hopkins CD; Nishida M
    PLoS One; 2012; 7(5):e36287. PubMed ID: 22606250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogeny and evolution of electric organs in gymnotiform fish.
    Kirschbaum F; Schwassmann HO
    J Physiol Paris; 2008; 102(4-6):347-56. PubMed ID: 18984049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.
    Waddell JC; Rodríguez-Cattáneo A; Caputi AA; Crampton WGR
    J Physiol Paris; 2016 Oct; 110(3 Pt B):164-181. PubMed ID: 27794446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the electric organ in embryos and larvae of the knifefish, Brachyhypopomus gauderio.
    Alshami IJJ; Ono Y; Correia A; Hacker C; Lange A; Scholpp S; Kawasaki M; Ingham PW; Kudoh T
    Dev Biol; 2020 Oct; 466(1-2):99-108. PubMed ID: 32687892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomy and homology of the accessory electric organs of the toothless knifefishes (Rhamphichthyoidea: Gymnotiformes).
    Giora J; Carvalho TP
    J Fish Biol; 2018 Dec; 93(6):1059-1068. PubMed ID: 30246387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation and modulation of electric waveforms in gymnotiform electric fish.
    Stoddard PK; Zakon HH; Markham MR; McAnelly L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):613-24. PubMed ID: 16437223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.
    Salazar VL; Krahe R; Lewis JE
    J Exp Biol; 2013 Jul; 216(Pt 13):2459-68. PubMed ID: 23761471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish, Apteronotus leptorhynchus.
    Sîrbulescu RF; Ilieş I; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jul; 195(7):699-714. PubMed ID: 19430939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription of MyoD and myogenin in the non-contractile electrogenic cells of the weakly electric fish, Sternopygus macrurus.
    Kim JA; Jonsson CB; Calderone T; Unguez GA
    Dev Genes Evol; 2004 Aug; 214(8):380-92. PubMed ID: 15309633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH-diaphorase activity and nitric oxide synthase-like immunoreactivity colocalize in the electromotor system of four species of gymnotiform fish.
    Smith GT; Unguez GA; Reinauer RM
    Brain Behav Evol; 2001; 58(3):122-36. PubMed ID: 11910170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chirping and asymmetric jamming avoidance responses in the electric fish
    Petzold JM; Alves-Gomes JA; Smith GT
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30012575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic analysis of the South American electric fishes (order Gymnotiformes) and the evolution of their electrogenic system: a synthesis based on morphology, electrophysiology, and mitochondrial sequence data.
    Alves-Gomes JA; Ortí G; Haygood M; Heiligenberg W; Meyer A
    Mol Biol Evol; 1995 Mar; 12(2):298-318. PubMed ID: 7700155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.
    Kawasaki M; Leonard J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Feb; 203(2):151-162. PubMed ID: 28190119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.