These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23761740)

  • 1. Neuronize: a tool for building realistic neuronal cell morphologies.
    Brito JP; Mata S; Bayona S; Pastor L; Defelipe J; Benavides-Piccione R
    Front Neuroanat; 2013; 7():15. PubMed ID: 23761740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronize v2: Bridging the Gap Between Existing Proprietary Tools to Optimize Neuroscientific Workflows.
    Velasco I; Toharia P; Benavides-Piccione R; Fernaud-Espinosa I; Brito JP; Mata S; DeFelipe J; Pastor L; Bayona S
    Front Neuroanat; 2020; 14():585793. PubMed ID: 33192345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D morphology-based clustering and simulation of human pyramidal cell dendritic spines.
    Luengo-Sanchez S; Fernaud-Espinosa I; Bielza C; Benavides-Piccione R; Larrañaga P; DeFelipe J
    PLoS Comput Biol; 2018 Jun; 14(6):e1006221. PubMed ID: 29897896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement.
    Garcia-Cantero JJ; Brito JP; Mata S; Bayona S; Pastor L
    Front Neuroinform; 2017; 11():38. PubMed ID: 28690511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation, description and storage of dendritic morphology data.
    Ascoli GA; Krichmar JL; Nasuto SJ; Senft SL
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1131-45. PubMed ID: 11545695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Neural Diameter From Morphology to Enable Accurate Simulation.
    Reed JD; Blackwell KT
    Front Neuroinform; 2021; 15():666695. PubMed ID: 34149388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-referential forces are sufficient to explain different dendritic morphologies.
    Memelli H; Torben-Nielsen B; Kozloski J
    Front Neuroinform; 2013; 7():1. PubMed ID: 23386828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast extraction of neuron morphologies from large-scale SBFSEM image stacks.
    Lang S; Drouvelis P; Tafaj E; Bastian P; Sakmann B
    J Comput Neurosci; 2011 Nov; 31(3):533-45. PubMed ID: 21424815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models and simulation of 3D neuronal dendritic trees using Bayesian networks.
    López-Cruz PL; Bielza C; Larrañaga P; Benavides-Piccione R; DeFelipe J
    Neuroinformatics; 2011 Dec; 9(4):347-69. PubMed ID: 21305364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated 3D Soma Segmentation with Morphological Surface Evolution for Neuron Reconstruction.
    Zhang D; Liu S; Song Y; Feng D; Peng H; Cai W
    Neuroinformatics; 2018 Apr; 16(2):153-166. PubMed ID: 29344781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons.
    Anton-Sanchez L; Larrañaga P; Benavides-Piccione R; Fernaud-Espinosa I; DeFelipe J; Bielza C
    PLoS One; 2017; 12(6):e0180400. PubMed ID: 28662210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies.
    Koene RA; Tijms B; van Hees P; Postma F; de Ridder A; Ramakers GJ; van Pelt J; van Ooyen A
    Neuroinformatics; 2009 Sep; 7(3):195-210. PubMed ID: 19672726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impulse encoding across the dendritic morphologies of retinal ganglion cells.
    Sheasby BW; Fohlmeister JF
    J Neurophysiol; 1999 Apr; 81(4):1685-98. PubMed ID: 10200204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An image analysis algorithm for dendritic spines.
    Koh IY; Lindquist WB; Zito K; Nimchinsky EA; Svoboda K
    Neural Comput; 2002 Jun; 14(6):1283-310. PubMed ID: 12020447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling.
    Brown SA; Moraru II; Schaff JC; Loew LM
    J Comput Neurosci; 2011 Oct; 31(2):385-400. PubMed ID: 21340454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Building generic anatomical models using virtual model cutting and iterative registration.
    Xiao M; Soh J; Meruvia-Pastor O; Schmidt E; Hallgrímsson B; Sensen CW
    BMC Med Imaging; 2010 Feb; 10():5. PubMed ID: 20144190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volumetric three-dimensional intravascular ultrasound visualization using shape-based nonlinear interpolation.
    Rim Y; McPherson DD; Kim H
    Biomed Eng Online; 2013 May; 12():39. PubMed ID: 23651569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal gain modulability is determined by dendritic morphology: A computational optogenetic study.
    Jarvis S; Nikolic K; Schultz SR
    PLoS Comput Biol; 2018 Mar; 14(3):e1006027. PubMed ID: 29522509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulations of voltage clamping retinal ganglion cells through whole-cell electrodes in the soma.
    Velte TJ; Miller RF
    J Neurophysiol; 1996 May; 75(5):2129-43. PubMed ID: 8734609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.