BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 23762088)

  • 1. RANKL cytokine: from pioneer of the osteoimmunology era to cure for a rare disease.
    Lo Iacono N; Pangrazio A; Abinun M; Bredius R; Zecca M; Blair HC; Vezzoni P; Villa A; Sobacchi C
    Clin Dev Immunol; 2013; 2013():412768. PubMed ID: 23762088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteopetrosis rescue upon RANKL administration to Rankl(-/-) mice: a new therapy for human RANKL-dependent ARO.
    Lo Iacono N; Blair HC; Poliani PL; Marrella V; Ficara F; Cassani B; Facchetti F; Fontana E; Guerrini MM; Traggiai E; Schena F; Paulis M; Mantero S; Inforzato A; Valaperta S; Pangrazio A; Crisafulli L; Maina V; Kostenuik P; Vezzoni P; Villa A; Sobacchi C
    J Bone Miner Res; 2012 Dec; 27(12):2501-10. PubMed ID: 22836362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteopetroses and immunodeficiencies in humans.
    Villa A; Vezzoni P; Frattini A
    Curr Opin Allergy Clin Immunol; 2006 Dec; 6(6):421-7. PubMed ID: 17088646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor.
    Villa A; Guerrini MM; Cassani B; Pangrazio A; Sobacchi C
    Calcif Tissue Int; 2009 Jan; 84(1):1-12. PubMed ID: 19082854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations.
    Guerrini MM; Sobacchi C; Cassani B; Abinun M; Kilic SS; Pangrazio A; Moratto D; Mazzolari E; Clayton-Smith J; Orchard P; Coxon FP; Helfrich MH; Crockett JC; Mellis D; Vellodi A; Tezcan I; Notarangelo LD; Rogers MJ; Vezzoni P; Villa A; Frattini A
    Am J Hum Genet; 2008 Jul; 83(1):64-76. PubMed ID: 18606301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL.
    Kostenuik PJ; Nguyen HQ; McCabe J; Warmington KS; Kurahara C; Sun N; Chen C; Li L; Cattley RC; Van G; Scully S; Elliott R; Grisanti M; Morony S; Tan HL; Asuncion F; Li X; Ominsky MS; Stolina M; Dwyer D; Dougall WC; Hawkins N; Boyle WJ; Simonet WS; Sullivan JK
    J Bone Miner Res; 2009 Feb; 24(2):182-95. PubMed ID: 19016581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo.
    Kitaura H; Kimura K; Ishida M; Kohara H; Yoshimatsu M; Takano-Yamamoto T
    Clin Dev Immunol; 2013; 2013():181849. PubMed ID: 23762085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoclast-poor osteopetrosis.
    Sobacchi C; Abinun M
    Bone; 2022 Nov; 164():116541. PubMed ID: 36031188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autosomal recessive osteopetrosis: mechanisms and treatments.
    Penna S; Villa A; Capo V
    Dis Model Mech; 2021 May; 14(5):. PubMed ID: 33970241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PDK1 is important lipid kinase for RANKL-induced osteoclast formation and function via the regulation of the Akt-GSK3β-NFATc1 signaling cascade.
    Xiao D; Zhou Q; Gao Y; Cao B; Zhang Q; Zeng G; Zong S
    J Cell Biochem; 2020 Nov; 121(11):4542-4557. PubMed ID: 32048762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL.
    Sobacchi C; Frattini A; Guerrini MM; Abinun M; Pangrazio A; Susani L; Bredius R; Mancini G; Cant A; Bishop N; Grabowski P; Del Fattore A; Messina C; Errigo G; Coxon FP; Scott DI; Teti A; Rogers MJ; Vezzoni P; Villa A; Helfrich MH
    Nat Genet; 2007 Aug; 39(8):960-2. PubMed ID: 17632511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Committed osteoclast precursors colonize the bone and improve the phenotype of a mouse model of autosomal recessive osteopetrosis.
    Cappariello A; Berardi AC; Peruzzi B; Del Fattore A; Ugazio A; Bottazzo GF; Teti A
    J Bone Miner Res; 2010 Jan; 25(1):106-13. PubMed ID: 20091929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro differentiation of CD14 cells from osteopetrotic subjects: contrasting phenotypes with TCIRG1, CLCN7, and attachment defects.
    Blair HC; Borysenko CW; Villa A; Schlesinger PH; Kalla SE; Yaroslavskiy BB; Garćia-Palacios V; Oakley JI; Orchard PJ
    J Bone Miner Res; 2004 Aug; 19(8):1329-38. PubMed ID: 15231021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling Adaptor DAP12.
    Kameda Y; Takahata M; Komatsu M; Mikuni S; Hatakeyama S; Shimizu T; Angata T; Kinjo M; Minami A; Iwasaki N
    J Bone Miner Res; 2013 Dec; 28(12):2463-75. PubMed ID: 23677868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RARγ is a negative regulator of osteoclastogenesis.
    Green AC; Poulton IJ; Vrahnas C; Häusler KD; Walkley CR; Wu JY; Martin TJ; Gillespie MT; Chandraratna RA; Quinn JM; Sims NA; Purton LE
    J Steroid Biochem Mol Biol; 2015 Jun; 150():46-53. PubMed ID: 25800721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapidil, a platelet-derived growth factor antagonist, inhibits osteoclastogenesis by down-regulating NFATc1 and suppresses bone loss in mice.
    Kim SD; Kim HN; Lee JH; Jin WJ; Hwang SJ; Kim HH; Ha H; Lee ZH
    Biochem Pharmacol; 2013 Sep; 86(6):782-90. PubMed ID: 23928189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties.
    Chu K; Snyder R; Econs MJ
    J Bone Miner Res; 2006 Jul; 21(7):1089-97. PubMed ID: 16813529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postmenopausal osteoporosis: the role of immune system cells.
    Faienza MF; Ventura A; Marzano F; Cavallo L
    Clin Dev Immunol; 2013; 2013():575936. PubMed ID: 23762093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow.
    Mousa A; Cui C; Song A; Myneni VD; Sun H; Li JJ; Murshed M; Melino G; Kaartinen MT
    Cell Death Differ; 2017 May; 24(5):844-854. PubMed ID: 28387755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of dimeric glucocorticoid receptors in osteoclast progenitors potentiates RANKL induced mature osteoclast bone resorbing activity.
    Conaway HH; Henning P; Lie A; Tuckermann J; Lerner UH
    Bone; 2016 Dec; 93():43-54. PubMed ID: 27596806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.