These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 23762209)

  • 1. Global Mapping of Transcription Factor Binding Sites by Sequencing Chromatin Surrogates: a Perspective on Experimental Design, Data Analysis, and Open Problems.
    Wei Y; Wu G; Ji H
    Stat Biosci; 2013 May; 5(1):156-178. PubMed ID: 23762209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome.
    Kuznetsov VA; Singh O; Jenjaroenpun P
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering unknown human and mouse transcription factor binding sites and their characteristics from ChIP-seq data.
    Yu CP; Kuo CH; Nelson CW; Chen CA; Soh ZT; Lin JJ; Hsiao RX; Chang CY; Li WH
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33975951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pinpointing transcription factor binding sites from ChIP-seq data with SeqSite.
    Wang X; Zhang X
    BMC Syst Biol; 2011; 5 Suppl 2(Suppl 2):S3. PubMed ID: 22784574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq).
    Zhu JY; Sun Y; Wang ZY
    Methods Mol Biol; 2012; 876():173-88. PubMed ID: 22576095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.
    Ozaki H; Iwasaki W
    Comput Biol Chem; 2016 Aug; 63():62-72. PubMed ID: 26971251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UniBind: maps of high-confidence direct TF-DNA interactions across nine species.
    Puig RR; Boddie P; Khan A; Castro-Mondragon JA; Mathelier A
    BMC Genomics; 2021 Jun; 22(1):482. PubMed ID: 34174819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA sequence motif: a jack of all trades for ChIP-Seq data.
    Kulakovskiy IV; Makeev VJ
    Adv Protein Chem Struct Biol; 2013; 91():135-71. PubMed ID: 23790213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating ChIP-seq with other functional genomics data.
    Jiang S; Mortazavi A
    Brief Funct Genomics; 2018 Mar; 17(2):104-115. PubMed ID: 29579165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation.
    Waki H; Nakamura M; Yamauchi T; Wakabayashi K; Yu J; Hirose-Yotsuya L; Take K; Sun W; Iwabu M; Okada-Iwabu M; Fujita T; Aoyama T; Tsutsumi S; Ueki K; Kodama T; Sakai J; Aburatani H; Kadowaki T
    PLoS Genet; 2011 Oct; 7(10):e1002311. PubMed ID: 22028663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative analysis of ChIP-chip and ChIP-seq dataset.
    Zhu LJ
    Methods Mol Biol; 2013; 1067():105-24. PubMed ID: 23975789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical guidelines for the comprehensive analysis of ChIP-seq data.
    Bailey T; Krajewski P; Ladunga I; Lefebvre C; Li Q; Liu T; Madrigal P; Taslim C; Zhang J
    PLoS Comput Biol; 2013; 9(11):e1003326. PubMed ID: 24244136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo motif identification improves the accuracy of predicting transcription factor binding sites in ChIP-Seq data analysis.
    Boeva V; Surdez D; Guillon N; Tirode F; Fejes AP; Delattre O; Barillot E
    Nucleic Acids Res; 2010 Jun; 38(11):e126. PubMed ID: 20375099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping protein-DNA interactions using ChIP-sequencing.
    Massie CE; Mills IG
    Methods Mol Biol; 2012; 809():157-73. PubMed ID: 22113275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.