BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23762453)

  • 1. The isolation, differentiation, and survival in vivo of multipotent cells from the postnatal rat filum terminale.
    Jha RM; Chrenek R; Magnotti LM; Cardozo DL
    PLoS One; 2013; 8(6):e65974. PubMed ID: 23762453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons.
    Jha RM; Liu X; Chrenek R; Madsen JR; Cardozo DL
    Neurosurgery; 2013 Jan; 72(1):118-29; discussion 129. PubMed ID: 23096415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of human multipotent neural progenitors from adult filum terminale.
    Varghese M; Olstorn H; Berg-Johnsen J; Moe MC; Murrell W; Langmoen IA
    Stem Cells Dev; 2009 May; 18(4):603-13. PubMed ID: 18652547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplantation of neural stem cells encapsulated in hydrogels improve functional recovery in a cauda equina lesion model.
    Fu Z; Wang H; Wu Y; Zhu T
    Biosci Trends; 2020 Nov; 14(5):360-367. PubMed ID: 33100289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans.
    Chrenek R; Magnotti LM; Herrera GR; Jha RM; Cardozo DL
    J Comp Neurol; 2017 Feb; 525(3):661-675. PubMed ID: 27511739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adult spinal cord stem/progenitor cells transplanted as neurospheres preferentially differentiate into oligodendrocytes in the adult rat spinal cord.
    Mothe AJ; Kulbatski I; Parr A; Mohareb M; Tator CH
    Cell Transplant; 2008; 17(7):735-51. PubMed ID: 19044201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution and characterization of progenitor cells within the human filum terminale.
    Arvidsson L; Fagerlund M; Jaff N; Ossoinak A; Jansson K; Hägerstrand A; Johansson CB; Brundin L; Svensson M
    PLoS One; 2011; 6(11):e27393. PubMed ID: 22096566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.
    Chvátal A; Andĕrová M; Ziak D; Orkand RK; Syková E
    Neurosci Res; 2001 May; 40(1):23-35. PubMed ID: 11311402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field stimulation induced neuronal differentiation of filum terminale derived neural progenitor cells.
    Dong ZY; Pei Z; Li Z; Wang YL; Khan A; Meng XT
    Neurosci Lett; 2017 Jun; 651():109-115. PubMed ID: 28476410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats.
    Das MM; Avalos P; Suezaki P; Godoy M; Garcia L; Chang CD; Vit JP; Shelley B; Gowing G; Svendsen CN
    Exp Neurol; 2016 Jun; 280():41-9. PubMed ID: 27032721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro.
    Yen BL; Chien CC; Chen YC; Chen JT; Huang JS; Lee FK; Huang HI
    Tissue Eng Part A; 2008 Jan; 14(1):9-17. PubMed ID: 18333820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis.
    Kalyani A; Hobson K; Rao MS
    Dev Biol; 1997 Jun; 186(2):202-23. PubMed ID: 9205140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of glial cells and motor neurons during the formation of neuromuscular junctions in cocultures of rat spinal cord explant and human muscle.
    Mars T; Yu KJ; Tang XM; Miranda AF; Grubic Z; Cambi F; King MP
    J Comp Neurol; 2001 Sep; 438(2):239-51. PubMed ID: 11536191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of Neural Stem/Progenitor Cells from the Periventricular Region of the Adult Rat and Human Spinal Cord.
    Mothe A; Tator CH
    J Vis Exp; 2015 May; (99):e52732. PubMed ID: 26067928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of neural stem cells from the neonatal rat cochlear nucleus.
    Rak K; Wasielewski NV; Radeloff A; Völkers J; Scherzed A; Jablonka S; Hagen R; Mlynski R
    Cell Tissue Res; 2011 Mar; 343(3):499-508. PubMed ID: 21258945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progranulin expression in neural stem cells and their differentiated cell lineages: an immunocytochemical study.
    Lü L; Luo L; Lu Y; Chen L; Xu J; Guo K
    Mol Med Rep; 2013 Nov; 8(5):1359-64. PubMed ID: 24002337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal age governs the extent of differentiation of hippocampal CA1 and CA3 subfield neural stem/progenitor cells into neurons and oligodendrocytes.
    Shetty AK; Hattiangady B
    Int J Dev Neurosci; 2013 Nov; 31(7):646-56. PubMed ID: 23743166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of neural stem cells from the postnatal cerebellum.
    Lee A; Kessler JD; Read TA; Kaiser C; Corbeil D; Huttner WB; Johnson JE; Wechsler-Reya RJ
    Nat Neurosci; 2005 Jun; 8(6):723-9. PubMed ID: 15908947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro differentiation of neural stem cells derived from human olfactory bulb into dopaminergic-like neurons.
    Alizadeh R; Hassanzadeh G; Joghataei MT; Soleimani M; Moradi F; Mohammadpour S; Ghorbani J; Safavi A; Sarbishegi M; Pirhajati Mahabadi V; Alizadeh L; Hadjighassem M
    Eur J Neurosci; 2017 Mar; 45(6):773-784. PubMed ID: 27987378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progenitor-derived oligodendrocyte culture system from human fetal brain.
    Monaco MC; Maric D; Bandeian A; Leibovitch E; Yang W; Major EO
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23288248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.