These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 23762457)
1. Revealing the hidden relationship by sparse modules in complex networks with a large-scale analysis. Jiao QJ; Huang Y; Liu W; Wang XF; Chen XS; Shen HB PLoS One; 2013; 8(6):e66020. PubMed ID: 23762457 [TBL] [Abstract][Full Text] [Related]
2. BinTree seeking: a novel approach to mine both bi-sparse and cohesive modules in protein interaction networks. Jiao QJ; Zhang YK; Li LN; Shen HB PLoS One; 2011; 6(11):e27646. PubMed ID: 22140454 [TBL] [Abstract][Full Text] [Related]
3. A new multi-scale method to reveal hierarchical modular structures in biological networks. Jiao QJ; Huang Y; Shen HB Mol Biosyst; 2016 Nov; 12(12):3724-3733. PubMed ID: 27783080 [TBL] [Abstract][Full Text] [Related]
4. Protein interaction networks--more than mere modules. Pinkert S; Schultz J; Reichardt J PLoS Comput Biol; 2010 Jan; 6(1):e1000659. PubMed ID: 20126533 [TBL] [Abstract][Full Text] [Related]
5. Arabidopsis gene co-expression network and its functional modules. Mao L; Van Hemert JL; Dash S; Dickerson JA BMC Bioinformatics; 2009 Oct; 10():346. PubMed ID: 19845953 [TBL] [Abstract][Full Text] [Related]
6. Identification of regulatory modules in genome scale transcription regulatory networks. Song Q; Grene R; Heath LS; Li S BMC Syst Biol; 2017 Dec; 11(1):140. PubMed ID: 29246163 [TBL] [Abstract][Full Text] [Related]
7. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks. He J; Li C; Ye B; Zhong W BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S19. PubMed ID: 22759424 [TBL] [Abstract][Full Text] [Related]
8. A novel subgradient-based optimization algorithm for blockmodel functional module identification. Wang Y; Qian X BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S23. PubMed ID: 23368964 [TBL] [Abstract][Full Text] [Related]
9. Detecting Functional Modules Based on a Multiple-Grain Model in Large-Scale Protein-Protein Interaction Networks. Ji J; Lv J; Yang C; Zhang A IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(4):610-22. PubMed ID: 26394434 [TBL] [Abstract][Full Text] [Related]
10. Feature related multi-view nonnegative matrix factorization for identifying conserved functional modules in multiple biological networks. Wang P; Gao L; Hu Y; Li F BMC Bioinformatics; 2018 Oct; 19(1):394. PubMed ID: 30373534 [TBL] [Abstract][Full Text] [Related]
11. Identify bilayer modules via pseudo-3D clustering: applications to miRNA-gene bilayer networks. Xu Y; Guo M; Liu X; Wang C; Liu Y; Liu G Nucleic Acids Res; 2016 Nov; 44(20):e152. PubMed ID: 27484480 [TBL] [Abstract][Full Text] [Related]
12. Functional module identification in protein interaction networks by interaction patterns. Wang Y; Qian X Bioinformatics; 2014 Jan; 30(1):81-93. PubMed ID: 24085567 [TBL] [Abstract][Full Text] [Related]
13. Gene network-based cancer prognosis analysis with sparse boosting. Ma S; Huang Y; Huang J; Fang K Genet Res (Camb); 2012 Aug; 94(4):205-21. PubMed ID: 22950901 [TBL] [Abstract][Full Text] [Related]
14. Functional diversity of topological modules in human protein-protein interaction networks. Liu G; Wang H; Chu H; Yu J; Zhou X Sci Rep; 2017 Nov; 7(1):16199. PubMed ID: 29170401 [TBL] [Abstract][Full Text] [Related]
15. Revealing radiotherapy- and chemoradiation-induced pathway dynamics in glioblastoma by analyzing multiple differential networks. Zhou J; Chen C; Li HF; Hu YJ; Xie HL Mol Med Rep; 2017 Jul; 16(1):696-702. PubMed ID: 28560382 [TBL] [Abstract][Full Text] [Related]
16. Mining the modular structure of protein interaction networks. Berenstein AJ; Piñero J; Furlong LI; Chernomoretz A PLoS One; 2015; 10(4):e0122477. PubMed ID: 25856434 [TBL] [Abstract][Full Text] [Related]
17. Exploring overlapping functional units with various structure in protein interaction networks. Zhang XF; Dai DQ; Ou-Yang L; Wu MY PLoS One; 2012; 7(8):e43092. PubMed ID: 22916212 [TBL] [Abstract][Full Text] [Related]
18. Algorithm to identify frequent coupled modules from two-layered network series: application to study transcription and splicing coupling. Li W; Dai C; Liu CC; Zhou XJ J Comput Biol; 2012 Jun; 19(6):710-30. PubMed ID: 22697243 [TBL] [Abstract][Full Text] [Related]
19. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data. Zhang W; Zhou T PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991 [TBL] [Abstract][Full Text] [Related]
20. Module network inference from a cancer gene expression data set identifies microRNA regulated modules. Bonnet E; Tatari M; Joshi A; Michoel T; Marchal K; Berx G; Van de Peer Y PLoS One; 2010 Apr; 5(4):e10162. PubMed ID: 20418949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]