BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23762522)

  • 1. Eco-evolutionary responses of Bromus tectorum to climate change: implications for biological invasions.
    Zelikova TJ; Hufbauer RA; Reed SC; Wertin T; Fettig C; Belnap J
    Ecol Evol; 2013 May; 3(5):1374-87. PubMed ID: 23762522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Warming Changes Phenology and Shortens Growing Season of the Dominant Invasive Plant
    Howell A; Winkler DE; Phillips ML; McNellis B; Reed SC
    Front Plant Sci; 2020; 11():570001. PubMed ID: 33178240
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of precipitation change and neighboring plants on population dynamics of Bromus tectorum.
    Prevéy JS; Seastedt TR
    Oecologia; 2015 Nov; 179(3):765-75. PubMed ID: 26227366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cheatgrass is favored by warming but not CO2 enrichment in a semi-arid grassland.
    Blumenthal DM; Kray JA; Ortmans W; Ziska LH; Pendall E
    Glob Chang Biol; 2016 Sep; 22(9):3026-38. PubMed ID: 27090757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A warmer and drier climate in the northern sagebrush biome does not promote cheatgrass invasion or change its response to fire.
    Larson CD; Lehnhoff EA; Rew LJ
    Oecologia; 2017 Dec; 185(4):763-774. PubMed ID: 29038863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Native perennial grasses show evolutionary response to Bromus tectorum (cheatgrass) invasion.
    Goergen EM; Leger EA; Espeland EK
    PLoS One; 2011 Mar; 6(3):e18145. PubMed ID: 21479185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global change effects on Bromus tectorum L. (Poaceae) at its high-elevation range margin.
    Concilio AL; Loik ME; Belnap J
    Glob Chang Biol; 2013 Jan; 19(1):161-72. PubMed ID: 23504728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Warming acts through earlier snowmelt to advance but not extend alpine community flowering.
    Jabis MD; Winkler DE; Kueppers LM
    Ecology; 2020 Sep; 101(9):e03108. PubMed ID: 32455489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of climate and snow depth on Bromus tectorum population dynamics at high elevation.
    Griffith AB; Loik ME
    Oecologia; 2010 Nov; 164(3):821-32. PubMed ID: 20740291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between cheatgrass and bluebunch wheatgrass is altered by temperature, resource availability, and atmospheric CO
    Larson CD; Lehnhoff EA; Noffsinger C; Rew LJ
    Oecologia; 2018 Mar; 186(3):855-868. PubMed ID: 29273835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive effects of native shrubs on Bromus tectorum demography.
    Griffith AB
    Ecology; 2010 Jan; 91(1):141-54. PubMed ID: 20380204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invasive competitor and native seed predators contribute to rarity of the narrow endemic Astragalus sinuatus Piper.
    Combs JK; Reichard SH; Groom MJ; Wilderman DL; Camp PA
    Ecol Appl; 2011 Oct; 21(7):2498-509. PubMed ID: 22073639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park.
    West AM; Kumar S; Wakie T; Brown CS; Stohlgren TJ; Laituri M; Bromberg J
    PLoS One; 2015; 10(2):e0117893. PubMed ID: 25695255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate change, snow mold and the
    Smull DM; Pendleton N; Kleinhesselink AR; Adler PB
    AoB Plants; 2019 Oct; 11(5):plz043. PubMed ID: 31559006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergy between roads and disturbance favour
    Speziale KL; di Virgilio A; Lescano MN; Pirk G; Franzese J
    PeerJ; 2018; 6():e5529. PubMed ID: 30186695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A natural heating experiment: Phenotypic and genotypic responses of plant phenology to geothermal soil warming.
    Valdés A; Marteinsdóttir B; Ehrlén J
    Glob Chang Biol; 2019 Mar; 25(3):954-962. PubMed ID: 30430704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Winter plant phenology in the alpine meadow on the eastern Qinghai-Tibetan Plateau.
    Mo L; Luo P; Mou C; Yang H; Wang J; Wang Z; Li Y; Luo C; Li T; Zuo D
    Ann Bot; 2018 Nov; 122(6):1033-1045. PubMed ID: 29982286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prairie plant phenology driven more by temperature than moisture in climate manipulations across a latitudinal gradient in the Pacific Northwest, USA.
    Reed PB; Pfeifer-Meister LE; Roy BA; Johnson BR; Bailes GT; Nelson AA; Boulay MC; Hamman ST; Bridgham SD
    Ecol Evol; 2019 Mar; 9(6):3637-3650. PubMed ID: 30962915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.