These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23762615)

  • 21. Temporal processing and speech perception in noise by listeners with auditory neuropathy.
    Narne VK
    PLoS One; 2013; 8(2):e55995. PubMed ID: 23409105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicted effects of sensorineural hearing loss on across-fiber envelope coding in the auditory nerve.
    Swaminathan J; Heinz MG
    J Acoust Soc Am; 2011 Jun; 129(6):4001-13. PubMed ID: 21682421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auditory processing in individuals with auditory neuropathy.
    Kumar AU; Jayaram M
    Behav Brain Funct; 2005 Dec; 1():21. PubMed ID: 16321163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The filtered words test and the influence of lexicality.
    Arnott W; Goli T; Bradley A; Smith A; Wilson W
    J Speech Lang Hear Res; 2014 Oct; 57(5):1722-30. PubMed ID: 24686890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auditory models of suprathreshold distortion and speech intelligibility in persons with impaired hearing.
    Bernstein JG; Summers V; Grassi E; Grant KW
    J Am Acad Audiol; 2013 Apr; 24(4):307-28. PubMed ID: 23636211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Random Gap Detection Test and Random Gap Detection Test-Expanded results in children with auditory neuropathy.
    Yalçinkaya F; Muluk NB; Ataş A; Keith RW
    Int J Pediatr Otorhinolaryngol; 2009 Nov; 73(11):1558-63. PubMed ID: 19735949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gap detection measured with electrically evoked auditory event-related potentials and speech-perception abilities in children with auditory neuropathy spectrum disorder.
    He S; Grose JH; Teagle HF; Woodard J; Park LR; Hatch DR; Buchman CA
    Ear Hear; 2013; 34(6):733-44. PubMed ID: 23722354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of signal processing on intelligibility of speech in noise for persons with sensorineural hearing loss.
    Yanick P
    J Am Audiol Soc; 1976; 1(5):229-38. PubMed ID: 956011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential contribution of envelope fluctuations across frequency to consonant identification in quiet.
    Apoux F; Bacon SP
    J Acoust Soc Am; 2008 May; 123(5):2792. PubMed ID: 18529195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of temporal envelope cues in speech recognition by normal and hearing-impaired listeners.
    Turner CW; Souza PE; Forget LN
    J Acoust Soc Am; 1995 Apr; 97(4):2568-76. PubMed ID: 7714274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of high pass filtering on the intelligibility of amplitude-compressed speech.
    Vargo SW
    J Am Aud Soc; 1979; 5(3):163-7. PubMed ID: 528294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of Speech Perception in the Auditory-Visual Mode: An Empirical Evidence for the Management of Auditory Neuropathy Spectrum Disorders.
    Balan JR; Maruthy S
    J Audiol Otol; 2018 Oct; 22(4):197-203. PubMed ID: 29969891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auditory processing studied prospectively in two hemidecorticectomy patients.
    Boatman D; Vining EP; Freeman J; Carson B
    J Child Neurol; 2003 Mar; 18(3):228-32. PubMed ID: 12731649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low- and high-pass filtered Northwestern University Auditory Test No. 6 for monaural and binaural evaluation.
    Bornstein SP; Wilson RH; Cambron NK
    J Am Acad Audiol; 1994 Jul; 5(4):259-64. PubMed ID: 7949299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of low-pass noise in word-recognition testing.
    Cohen RL; Keith RW
    J Speech Hear Res; 1976 Mar; 19(1):48-54. PubMed ID: 1271800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Benefits of bilateral electrical stimulation with the nucleus cochlear implant in adults: 6-month postoperative results.
    Laszig R; Aschendorff A; Stecker M; Müller-Deile J; Maune S; Dillier N; Weber B; Hey M; Begall K; Lenarz T; Battmer RD; Böhm M; Steffens T; Strutz J; Linder T; Probst R; Allum J; Westhofen M; Doering W
    Otol Neurotol; 2004 Nov; 25(6):958-68. PubMed ID: 15547426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Syllabic (∼2-5 Hz) and fluctuation (∼1-10 Hz) ranges in speech and auditory processing.
    Edwards E; Chang EF
    Hear Res; 2013 Nov; 305():113-34. PubMed ID: 24035819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acoustically evoked auditory change complex in children with auditory neuropathy spectrum disorder: a potential objective tool for identifying cochlear implant candidates.
    He S; Grose JH; Teagle HF; Woodard J; Park LR; Hatch DR; Roush P; Buchman CA
    Ear Hear; 2015; 36(3):289-301. PubMed ID: 25422994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gender identification in younger and older adults: use of spectral and temporal cues in noise-vocoded speech.
    Schvartz KC; Chatterjee M
    Ear Hear; 2012; 33(3):411-20. PubMed ID: 22237163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of reducing slow temporal modulations on speech reception.
    Drullman R; Festen JM; Plomp R
    J Acoust Soc Am; 1994 May; 95(5 Pt 1):2670-80. PubMed ID: 8207140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.