These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23763154)

  • 21. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties.
    Chen G; Davis RC; Futaba DN; Sakurai S; Kobashi K; Yumura M; Hata K
    Nanoscale; 2016 Jan; 8(1):162-71. PubMed ID: 26619935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets.
    Almkhelfe H; Carpena-Núñez J; Back TC; Amama PB
    Nanoscale; 2016 Jul; 8(27):13476-87. PubMed ID: 27353432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth.
    Bedewy M; Hart AJ
    Nanoscale; 2013 Apr; 5(7):2928-37. PubMed ID: 23455411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pre-heating effect on the catalytic growth of partially filled carbon nanotubes by chemical vapor deposition.
    Sengupta J; Jacob C
    J Nanosci Nanotechnol; 2010 May; 10(5):3064-71. PubMed ID: 20358900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer.
    Seo JK; Choi WS; Kim HD; Lee JH; Choi EC; Kim HJ; Hong B
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11032-6. PubMed ID: 22409050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of synthesis parameters on CCVD growth of vertically aligned carbon nanotubes over aluminum substrate.
    Szabó A; Kecsenovity E; Pápa Z; Gyulavári T; Németh K; Horvath E; Hernadi K
    Sci Rep; 2017 Aug; 7(1):9557. PubMed ID: 28842644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SEM and raman spectroscopy of multiwalled carbon nanotubes grown by novel technique of ash supported catalysts.
    Bhalerao GM; Waugh S; Ingale A; Sinha AK; Babu M; Tiwari P; Nandedkar RV
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1860-6. PubMed ID: 17654955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.
    Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D
    J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth and characterization of bamboo-shaped carbon nanotubes using nanocluster-assembled ZnO:Co thin films as catalyst.
    Zhao ZW; Lei W; Zhang XB; Tay BK; Chen JS
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6583-7. PubMed ID: 22962791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 2. The CNT-Fe/Co-MgAl2O4 system.
    Coquay P; Flahaut E; De Grave E; Peigney A; Vandenberghe RE; Laurent C
    J Phys Chem B; 2005 Sep; 109(38):17825-30. PubMed ID: 16853285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth of carbon nanotubes on cobalt catalyst film using electron cyclotron resonance chemical vapour deposition without thermal heating.
    Wu WT; Chen KH; Hsu CM
    Nanotechnology; 2006 Sep; 17(18):4542-7. PubMed ID: 21727575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of microwave plasma-assisted CVD on nanostructured iron catalysts to grow isolated bundles of carbon nanotubes.
    Assouar MB; Dossot M; Rizk S; Tiusan C; Bougdira J
    Nanotechnology; 2010 Feb; 21(6):065708. PubMed ID: 20057030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iridescence of patterned carbon nanotube forests on flexible substrates: from darkest materials to colorful films.
    Hsieh KC; Tsai TY; Wan D; Chen HL; Tai NH
    ACS Nano; 2010 Mar; 4(3):1327-36. PubMed ID: 20184384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanocomposite microstructures with tunable mechanical and chemical properties.
    Tawfick S; Deng X; Hart AJ; Lahann J
    Phys Chem Chem Phys; 2010 May; 12(17):4446-51. PubMed ID: 20407718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterned carbon nanotube growth using an electron beam sensitive direct writable catalyst.
    Patole SP; Patole AS; Rhen DS; Shahid M; Min H; Kang DJ; Kim TH; Yoo JB
    Nanotechnology; 2009 Aug; 20(31):315302. PubMed ID: 19597250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes.
    Liu H; Takagi D; Chiashi S; Chokan T; Homma Y
    J Nanosci Nanotechnol; 2010 Jun; 10(6):4068-73. PubMed ID: 20355416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulating the height of carbon nanotube forests by controlling the molybdenum thin film reservoir thickness.
    Shawat Avraham E; Westover AS; Girshevitz O; Pint CL; Nessim GD
    Nanoscale; 2019 Jan; 11(4):1929-1936. PubMed ID: 30644490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-destructive characterization of structural hierarchy within aligned carbon nanotube assemblies.
    Verploegen E; Hart AJ; De Volder M; Tawfick S; Chia KK; Cohen RE
    J Appl Phys; 2011 May; 109(9):94316-943165. PubMed ID: 21709723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.