These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23763165)

  • 1. Hydrothermal synthesis and electrochemical properties of KMn8O16 nanorods for lithium-ion battery applications.
    Zheng H; Zhang Q; Kim SJ; Jiang X; Dan M; Gao H; Li S; Wang S; Feng C
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2814-8. PubMed ID: 23763165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptomelane-Type KMn
    Cui J; Wu X; Yang S; Li C; Tang F; Chen J; Chen Y; Xiang Y; Wu X; He Z
    Front Chem; 2018; 6():352. PubMed ID: 30175094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Synthesis of Tremella-Like V₂O
    Zhou W; Mao Y; Tang M; Long L; Chen H; Li Y; Jia C
    J Nanosci Nanotechnol; 2019 Jan; 19(1):194-198. PubMed ID: 30327022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries.
    Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y
    Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Electrochemical Performance of NiCO₂S₄ as Anode for Lithium-Ion Batteries.
    Min F; Ran Y; Min Z; Teng F; Wang S; Wu H; Feng C
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5749-5755. PubMed ID: 29458635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal Synthesis and Electrochemical Performance of Manganese Oxide (Na-OMS-2) Nanorods.
    Zhang Q; Xu S; Zheng H; Luo Z; Liu K; Wang W; Li G; Wang S; Liu J; Feng C
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1470-475. PubMed ID: 29688521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Electrochemical Properties of LiFePO4/C for Lithium Ion Batteries.
    Gao H; Wang J; Yin S; Zheng H; Wang S; Feng C; Wang S
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2253-7. PubMed ID: 26413648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.
    Gao P; Reddy MA; Mu X; Diemant T; Zhang L; Zhao-Karger Z; Chakravadhanula VS; Clemens O; Behm RJ; Fichtner M
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4285-90. PubMed ID: 26924132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of LiFe0.975Rh0.025PO4 nanorods using the hydrothermal method.
    Tong D; Li Y; Chu W; Wu P; Luo F
    Dalton Trans; 2011 Apr; 40(16):4087-94. PubMed ID: 21384030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Bronze Phase Titanium Dioxide Nanorods for Use as Fast-Charging Anode Materials in Lithium-Ion Batteries.
    Pimta K; Autthawong T; Yodying W; Phromma C; Haruta M; Kurata H; Sarakonsri T; Chimupala Y
    ACS Omega; 2023 May; 8(17):15360-15370. PubMed ID: 37151525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform β-Na
    Song X; Xiao F; Li X; Li Z
    Nanotechnology; 2020 Feb; 31(9):094001. PubMed ID: 31703222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Electrochemical Properties of CoMn₂O₄ as Novel Material for Lithium Ion Battery Application.
    Chen X; Dang W; Feng C
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7665-7672. PubMed ID: 32711640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Construction of WO
    Zhang Y; Zhu K; Li R; Zeng S; Wang L
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemically stable tunnel-type α-MnO
    De Luna Y; Alsulaiti A; Ahmad MI; Nimir H; Bensalah N
    Front Chem; 2023; 11():1101459. PubMed ID: 36762193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Eutectic Solvent Synthesis of LiMnPO₄/C Nanorods as a Cathode Material for Lithium Ion Batteries.
    Wu Z; Huang RR; Yu H; Xie YC; Lv XY; Su J; Long YF; Wen YX
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell NiFe2O4@TiO2 nanorods: an anode material with enhanced electrochemical performance for lithium-ion batteries.
    Huang G; Zhang F; Du X; Wang J; Yin D; Wang L
    Chemistry; 2014 Aug; 20(35):11214-9. PubMed ID: 25044261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical performance of yttrium substituted LiY(x)Ni(1-x)O2 (0.00 < or = X < or = 0.20) cathode materials for rechargeable lithium-ion batteries.
    Mohan P; Kalaignan GP
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5278-82. PubMed ID: 24758016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries.
    Wang C; Yin L; Xiang D; Qi Y
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1636-42. PubMed ID: 22394097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of LiFePO₄/C Cathode Materials via a Green Synthesis Route for Lithium-Ion Battery Applications.
    Liu R; Chen J; Li Z; Ding Q; An X; Pan Y; Zheng Z; Yang M; Fu D
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30424540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.