These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23763274)

  • 1. Thermal lattice expansion effect on reactive scattering of H2 from Cu(111) at T(s) = 925 K.
    Mondal A; Wijzenbroek M; Bonfanti M; Díaz C; Kroes GJ
    J Phys Chem A; 2013 Sep; 117(36):8770-81. PubMed ID: 23763274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Six-dimensional dynamics study of reactive and non reactive scattering of H(2) from Cu(111) using a chemically accurate potential energy surface.
    Díaz C; Olsen RA; Auerbach DJ; Kroes GJ
    Phys Chem Chem Phys; 2010 Jun; 12(24):6499-519. PubMed ID: 20473432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive scattering of H2 from Cu(100): comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment.
    Sementa L; Wijzenbroek M; van Kolck BJ; Somers MF; Al-Halabi A; Busnengo HF; Olsen RA; Kroes GJ; Rutkowski M; Thewes C; Kleimeier NF; Zacharias H
    J Chem Phys; 2013 Jan; 138(4):044708. PubMed ID: 23387616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces.
    Kroes GJ; Díaz C
    Chem Soc Rev; 2016 Jun; 45(13):3658-700. PubMed ID: 26235525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static surface temperature effects on the dissociation of H2 and D2 on Cu(111).
    Wijzenbroek M; Somers MF
    J Chem Phys; 2012 Aug; 137(5):054703. PubMed ID: 22894367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of surface motion on the rotational quadrupole alignment parameter of D2 reacting on Cu(111).
    Nattino F; Díaz C; Jackson B; Kroes GJ
    Phys Rev Lett; 2012 Jun; 108(23):236104. PubMed ID: 23003976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a specific reaction parameter density functional for reactive scattering of H2 from Pd(111).
    Boereboom JM; Wijzenbroek M; Somers MF; Kroes GJ
    J Chem Phys; 2013 Dec; 139(24):244707. PubMed ID: 24387388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of the exchange-correlation functional on H2 dissociation on Ru(0001).
    Wijzenbroek M; Kroes GJ
    J Chem Phys; 2014 Feb; 140(8):084702. PubMed ID: 24588186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seven-dimensional microcanonical treatment of hydrogen dissociation dynamics on Cu(111): clarifying the essential role of surface phonons.
    Abbott HL; Harrison I
    J Chem Phys; 2006 Jul; 125(2):24704. PubMed ID: 16848601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of H
    Wijzenbroek M; Helstone D; Meyer J; Kroes GJ
    J Chem Phys; 2016 Oct; 145(14):144701. PubMed ID: 27782530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Test of the Transferability of the Specific Reaction Parameter Functional for H
    Nour Ghassemi E; Somers M; Kroes GJ
    J Phys Chem C Nanomater Interfaces; 2018 Oct; 122(40):22939-22952. PubMed ID: 30344838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Six-dimensional quantum dynamics for dissociative chemisorption of H2 and D2 on Ag(111) on a permutation invariant potential energy surface.
    Jiang B; Guo H
    Phys Chem Chem Phys; 2014 Dec; 16(45):24704-15. PubMed ID: 25315820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reduced dimensionality quantum mechanical study of the H + HCF3 ↔ H2 + CF3 reaction.
    Shan X; Clary DC
    Phys Chem Chem Phys; 2013 Nov; 15(42):18530-8. PubMed ID: 24079013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically accurate simulation of a prototypical surface reaction: H2 dissociation on Cu(111).
    Díaz C; Pijper E; Olsen RA; Busnengo HF; Auerbach DJ; Kroes GJ
    Science; 2009 Nov; 326(5954):832-4. PubMed ID: 19892978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffractive and reactive scattering of H2 from Ru(0001): experimental and theoretical study.
    Nieto P; Farías D; Miranda R; Luppi M; Baerends EJ; Somers MF; van der Niet MJ; Olsen RA; Kroes GJ
    Phys Chem Chem Phys; 2011 May; 13(18):8583-97. PubMed ID: 21487588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Dynamics of Dissociative Chemisorption of H
    Smeets EWF; Füchsel G; Kroes GJ
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(37):23049-23063. PubMed ID: 31565113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy.
    Kroes GJ
    Phys Chem Chem Phys; 2021 Apr; 23(15):8962-9048. PubMed ID: 33885053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the role of dynamical barriers in barrierless reactions at low energies: S(1D) + H2.
    Lara M; Jambrina PG; Varandas AJ; Launay JM; Aoiz FJ
    J Chem Phys; 2011 Oct; 135(13):134313. PubMed ID: 21992311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen dissociation on Cu(111): the influence of lattice motion. Part I.
    Bonfanti M; Díaz C; Somers MF; Kroes GJ
    Phys Chem Chem Phys; 2011 Mar; 13(10):4552-61. PubMed ID: 21279192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The temperature dependence of methane dissociation on Ni(111) and Pt(111): mixed quantum-classical studies of the lattice response.
    Tiwari AK; Nave S; Jackson B
    J Chem Phys; 2010 Apr; 132(13):134702. PubMed ID: 20387949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.