These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 23763667)

  • 1. EEG signatures associated with stopping are sensitive to preparation.
    Greenhouse I; Wessel JR
    Psychophysiology; 2013 Sep; 50(9):900-8. PubMed ID: 23763667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.
    Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN
    Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveling the Field for a Fairer Race between Going and Stopping: Neural Evidence for the Race Model of Motor Inhibition from a New Version of the Stop Signal Task.
    Dykstra T; Waller DA; Hazeltine E; Wessel JR
    J Cogn Neurosci; 2020 Apr; 32(4):590-602. PubMed ID: 31742470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages.
    Tatz JR; Soh C; Wessel JR
    J Neurosci; 2021 Oct; 41(42):8826-8838. PubMed ID: 34493541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntarily-generated unimanual preparation is associated with stopping success: evidence from LRP and lateralized mu ERD before the stop signal.
    Ko YT; Cheng SK; Juan CH
    Psychol Res; 2015 Mar; 79(2):249-58. PubMed ID: 24718558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceptual Surprise Improves Action Stopping by Nonselectively Suppressing Motor Activity via a Neural Mechanism for Motor Inhibition.
    Dutra IC; Waller DA; Wessel JR
    J Neurosci; 2018 Feb; 38(6):1482-1492. PubMed ID: 29305533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical Modeling of Frontocentral ERP Generation Links Circuit-Level Mechanisms of Action-Stopping to a Behavioral Race Model.
    Diesburg DA; Wessel JR; Jones SR
    J Neurosci; 2024 May; 44(20):. PubMed ID: 38561227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Correlates of Response Inhibition and Error Processing in Individuals with Mild Traumatic Brain Injury: An Event-Related Potential Study.
    Shen IH; Lin YJ; Chen CL; Liao CC
    J Neurotrauma; 2020 Jan; 37(1):115-124. PubMed ID: 31317830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-ERP dynamics in a visual Continuous Performance Test.
    Karamacoska D; Barry RJ; De Blasio FM; Steiner GZ
    Int J Psychophysiol; 2019 Dec; 146():249-260. PubMed ID: 31648022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resting state intrinsic EEG impacts on go stimulus-response processes.
    Karamacoska D; Barry RJ; Steiner GZ
    Psychophysiology; 2017 Jun; 54(6):894-903. PubMed ID: 28258583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hold your horses: Differences in EEG correlates of inhibition in cancelling and stopping an action.
    Hervault M; Zanone PG; Buisson JC; Huys R
    Neuropsychologia; 2022 Jul; 172():108255. PubMed ID: 35513065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive, neural and endocrine functioning during late pregnancy: An Event-Related Potentials study.
    Fiterman O; Raz S
    Horm Behav; 2019 Nov; 116():104575. PubMed ID: 31442429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How salience enhances inhibitory control: An analysis of electro-cortical mechanisms.
    Kenemans JL; Schutte I; Van Bijnen S; Logemann HNA
    Biol Psychol; 2023 Feb; 177():108505. PubMed ID: 36669616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling countermands nonselective response inhibition during selective stopping.
    Wadsley CG; Cirillo J; Nieuwenhuys A; Byblow WD
    J Neurophysiol; 2022 Jan; 127(1):188-203. PubMed ID: 34936517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity.
    Swann NC; Cai W; Conner CR; Pieters TA; Claffey MP; George JS; Aron AR; Tandon N
    Neuroimage; 2012 Feb; 59(3):2860-70. PubMed ID: 21979383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition.
    Groom MJ; Cragg L
    Brain Cogn; 2015 Jul; 97():1-9. PubMed ID: 25955278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain electrical activity signatures during performance of the Multisource Interference Task.
    González-Villar AJ; Carrillo-de-la-Peña MT
    Psychophysiology; 2017 Jun; 54(6):874-881. PubMed ID: 28220517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response inhibition of children with ADHD in the stop-signal task: an event-related potential study.
    Senderecka M; Grabowska A; Szewczyk J; Gerc K; Chmylak R
    Int J Psychophysiol; 2012 Jul; 85(1):93-105. PubMed ID: 21641941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.