These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 23763755)
1. Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data. Morota G; Koyama M; Rosa GJ; Weigel KA; Gianola D Genet Sel Evol; 2013 Jun; 45(1):17. PubMed ID: 23763755 [TBL] [Abstract][Full Text] [Related]
2. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. Gianola D; Okut H; Weigel KA; Rosa GJ BMC Genet; 2011 Oct; 12():87. PubMed ID: 21981731 [TBL] [Abstract][Full Text] [Related]
3. Application of support vector regression to genome-assisted prediction of quantitative traits. Long N; Gianola D; Rosa GJ; Weigel KA Theor Appl Genet; 2011 Nov; 123(7):1065-74. PubMed ID: 21739137 [TBL] [Abstract][Full Text] [Related]
4. Predicting bull fertility using genomic data and biological information. Abdollahi-Arpanahi R; Morota G; Peñagaricano F J Dairy Sci; 2017 Dec; 100(12):9656-9666. PubMed ID: 28987577 [TBL] [Abstract][Full Text] [Related]
5. Predictive ability of genome-assisted statistical models under various forms of gene action. Momen M; Mehrgardi AA; Sheikhi A; Kranis A; Tusell L; Morota G; Rosa GJM; Gianola D Sci Rep; 2018 Aug; 8(1):12309. PubMed ID: 30120288 [TBL] [Abstract][Full Text] [Related]
6. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models. Okut H; Wu XL; Rosa GJ; Bauck S; Woodward BW; Schnabel RD; Taylor JF; Gianola D Genet Sel Evol; 2013 Sep; 45(1):34. PubMed ID: 24024641 [TBL] [Abstract][Full Text] [Related]
8. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle. Ehret A; Hochstuhl D; Gianola D; Thaller G Genet Sel Evol; 2015 Mar; 47(1):22. PubMed ID: 25886037 [TBL] [Abstract][Full Text] [Related]
9. Appraising the Genetic Architecture of Kernel Traits in Hexaploid Wheat Using GWAS. Muhammad A; Hu W; Li Z; Li J; Xie G; Wang J; Wang L Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32781752 [TBL] [Abstract][Full Text] [Related]
10. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models. Cuevas J; Crossa J; Montesinos-López OA; Burgueño J; Pérez-Rodríguez P; de Los Campos G G3 (Bethesda); 2017 Jan; 7(1):41-53. PubMed ID: 27793970 [TBL] [Abstract][Full Text] [Related]
12. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes. Abdollahi-Arpanahi R; Gianola D; Peñagaricano F Genet Sel Evol; 2020 Feb; 52(1):12. PubMed ID: 32093611 [TBL] [Abstract][Full Text] [Related]
13. Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. Howard R; Carriquiry AL; Beavis WD G3 (Bethesda); 2014 Apr; 4(6):1027-46. PubMed ID: 24727289 [TBL] [Abstract][Full Text] [Related]
14. Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. De los Campos G; Gianola D; Rosa GJ; Weigel KA; Crossa J Genet Res (Camb); 2010 Aug; 92(4):295-308. PubMed ID: 20943010 [TBL] [Abstract][Full Text] [Related]
15. Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression. Gianola D; Fernando RL; Schön CC Theor Popul Biol; 2020 Apr; 132():47-59. PubMed ID: 31830483 [TBL] [Abstract][Full Text] [Related]
16. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Crossa J; Campos Gde L; Pérez P; Gianola D; Burgueño J; Araus JL; Makumbi D; Singh RP; Dreisigacker S; Yan J; Arief V; Banziger M; Braun HJ Genetics; 2010 Oct; 186(2):713-24. PubMed ID: 20813882 [TBL] [Abstract][Full Text] [Related]
17. Genomic predictions of growth curves in Holstein dairy cattle based on parameter estimates from nonlinear models combined with different kernel functions. Yin T; König S J Dairy Sci; 2020 Aug; 103(8):7222-7237. PubMed ID: 32534925 [TBL] [Abstract][Full Text] [Related]
18. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. Pérez-Rodríguez P; Gianola D; González-Camacho JM; Crossa J; Manès Y; Dreisigacker S G3 (Bethesda); 2012 Dec; 2(12):1595-605. PubMed ID: 23275882 [TBL] [Abstract][Full Text] [Related]
19. An alternative covariance estimator to investigate genetic heterogeneity in populations. Heslot N; Jannink JL Genet Sel Evol; 2015 Nov; 47():93. PubMed ID: 26612537 [TBL] [Abstract][Full Text] [Related]
20. Comparison of genomic predictions using medium-density (∼54,000) and high-density (∼777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. Su G; Brøndum RF; Ma P; Guldbrandtsen B; Aamand GP; Lund MS J Dairy Sci; 2012 Aug; 95(8):4657-65. PubMed ID: 22818480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]