These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 23763755)
21. Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits. Morota G; Boddhireddy P; Vukasinovic N; Gianola D; Denise S Front Genet; 2014; 5():56. PubMed ID: 24715901 [TBL] [Abstract][Full Text] [Related]
22. Radial basis function regression methods for predicting quantitative traits using SNP markers. Long N; Gianola D; Rosa GJ; Weigel KA; Kranis A; González-Recio O Genet Res (Camb); 2010 Jun; 92(3):209-25. PubMed ID: 20667165 [TBL] [Abstract][Full Text] [Related]
23. Predicting male fertility in dairy cattle using markers with large effect and functional annotation data. Nani JP; Rezende FM; Peñagaricano F BMC Genomics; 2019 Apr; 20(1):258. PubMed ID: 30940077 [TBL] [Abstract][Full Text] [Related]
24. Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Gianola D; van Kaam JB Genetics; 2008 Apr; 178(4):2289-303. PubMed ID: 18430950 [TBL] [Abstract][Full Text] [Related]
25. Performance of pedigree and various forms of marker-derived relationship coefficients in genomic prediction and their correlations. Solaymani S; Ayatollahi Mehrgardi A; Esmailizadeh A; Tusell L; Momen M J Anim Breed Genet; 2020 Sep; 137(5):423-437. PubMed ID: 32003127 [TBL] [Abstract][Full Text] [Related]
26. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle. Hassani S; Saatchi M; Fernando RL; Garrick DJ Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091 [TBL] [Abstract][Full Text] [Related]
28. Genome-wide prediction using Bayesian additive regression trees. Waldmann P Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957 [TBL] [Abstract][Full Text] [Related]
29. (Quasi) multitask support vector regression with heuristic hyperparameter optimization for whole-genome prediction of complex traits: a case study with carcass traits in broilers. Alves AAC; Fernandes AFA; Lopes FB; Breen V; Hawken R; Gianola D; Rosa GJM G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37216670 [TBL] [Abstract][Full Text] [Related]
30. Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle. Lee J; Cheng H; Garrick D; Golden B; Dekkers J; Park K; Lee D; Fernando R Genet Sel Evol; 2017 Jan; 49(1):2. PubMed ID: 28093065 [TBL] [Abstract][Full Text] [Related]
31. Comparison of Models and Whole-Genome Profiling Approaches for Genomic-Enabled Prediction of Septoria Tritici Blotch, Stagonospora Nodorum Blotch, and Tan Spot Resistance in Wheat. Juliana P; Singh RP; Singh PK; Crossa J; Rutkoski JE; Poland JA; Bergstrom GC; Sorrells ME Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724084 [TBL] [Abstract][Full Text] [Related]
32. Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. Wang SX; Zhu YL; Zhang DX; Shao H; Liu P; Hu JB; Zhang H; Zhang HP; Chang C; Lu J; Xia XC; Sun GL; Ma CX PLoS One; 2017; 12(11):e0188662. PubMed ID: 29176820 [TBL] [Abstract][Full Text] [Related]
33. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Tiezzi F; Maltecca C Genet Sel Evol; 2015 Apr; 47(1):24. PubMed ID: 25886167 [TBL] [Abstract][Full Text] [Related]
34. Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle. Lopes FB; Baldi F; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Magnabosco CU Animal; 2021 Jan; 15(1):100006. PubMed ID: 33516009 [TBL] [Abstract][Full Text] [Related]
35. Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. Jamil M; Ali A; Gul A; Ghafoor A; Napar AA; Ibrahim AMH; Naveed NH; Yasin NA; Mujeeb-Kazi A BMC Plant Biol; 2019 Apr; 19(1):149. PubMed ID: 31003597 [TBL] [Abstract][Full Text] [Related]
36. Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction. Montesinos-López A; Montesinos-López OA; Crossa J; Burgueño J; Eskridge KM; Falconi-Castillo E; He X; Singh P; Cichy K G3 (Bethesda); 2016 May; 6(5):1165-77. PubMed ID: 26921298 [TBL] [Abstract][Full Text] [Related]
37. A predictive assessment of genetic correlations between traits in chickens using markers. Momen M; Mehrgardi AA; Sheikhy A; Esmailizadeh A; Fozi MA; Kranis A; Valente BD; Rosa GJ; Gianola D Genet Sel Evol; 2017 Feb; 49(1):16. PubMed ID: 28148241 [TBL] [Abstract][Full Text] [Related]
38. Genome-enable prediction for health traits using high-density SNP panel in US Holstein cattle. Lopes F; Rosa G; Pinedo P; Santos JEP; Chebel RC; Galvao KN; Schuenemann GM; Bicalho RC; Gilbert RO; Rodrigez-Zas S; Seabury CM; Thatcher W Anim Genet; 2020 Mar; 51(2):192-199. PubMed ID: 31909828 [TBL] [Abstract][Full Text] [Related]
39. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Moser G; Tier B; Crump RE; Khatkar MS; Raadsma HW Genet Sel Evol; 2009 Dec; 41(1):56. PubMed ID: 20043835 [TBL] [Abstract][Full Text] [Related]
40. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. Li F; Wen W; Liu J; Zhang Y; Cao S; He Z; Rasheed A; Jin H; Zhang C; Yan J; Zhang P; Wan Y; Xia X BMC Plant Biol; 2019 Apr; 19(1):168. PubMed ID: 31035920 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]