These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23763755)

  • 41. Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes.
    Kizilkaya K; Fernando RL; Garrick DJ
    J Anim Sci; 2010 Feb; 88(2):544-51. PubMed ID: 19820059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Comparison between Three Tuning Strategies for Gaussian Kernels in the Context of Univariate Genomic Prediction.
    Montesinos-López OA; Carter AH; Bernal-Sandoval DA; Cano-Paez B; Montesinos-López A; Crossa J
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553547
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kernel-based whole-genome prediction of complex traits: a review.
    Morota G; Gianola D
    Front Genet; 2014; 5():363. PubMed ID: 25360145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitivity to prior specification in Bayesian genome-based prediction models.
    Lehermeier C; Wimmer V; Albrecht T; Auinger HJ; Gianola D; Schmid VJ; Schön CC
    Stat Appl Genet Mol Biol; 2013 Jun; 12(3):375-91. PubMed ID: 23629460
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accounting for dominance to improve genomic evaluations of dairy cows for fertility and milk production traits.
    Aliloo H; Pryce JE; González-Recio O; Cocks BG; Hayes BJ
    Genet Sel Evol; 2016 Feb; 48():8. PubMed ID: 26830030
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of Genomic Selection Models to Predict Flowering Time and Spike Grain Number in Two Hexaploid Wheat Doubled Haploid Populations.
    Thavamanikumar S; Dolferus R; Thumma BR
    G3 (Bethesda); 2015 Jul; 5(10):1991-8. PubMed ID: 26206349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Model averaging for genome-enabled prediction with reproducing kernel Hilbert spaces: a case study with pig litter size and wheat yield.
    Tusell L; Pérez-Rodríguez P; Forni S; Gianola D
    J Anim Breed Genet; 2014 Apr; 131(2):105-15. PubMed ID: 24397267
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genomic prediction of bull fertility in US Jersey dairy cattle.
    Rezende FM; Nani JP; Peñagaricano F
    J Dairy Sci; 2019 Apr; 102(4):3230-3240. PubMed ID: 30712930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.
    Covarrubias-Pazaran G
    PLoS One; 2016; 11(6):e0156744. PubMed ID: 27271781
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Marker-assisted prediction of non-additive genetic values.
    Long N; Gianola D; Rosa GJ; Weigel KA
    Genetica; 2011 Jul; 139(7):843-54. PubMed ID: 21674154
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genomic prediction of genetic merit using LD-based haplotypes in the Nordic Holstein population.
    Cuyabano BC; Su G; Lund MS
    BMC Genomics; 2014 Dec; 15(1):1171. PubMed ID: 25539631
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments.
    Howard R; Gianola D; Montesinos-López O; Juliana P; Singh R; Poland J; Shrestha S; Pérez-Rodríguez P; Crossa J; Jarquín D
    G3 (Bethesda); 2019 Sep; 9(9):2925-2934. PubMed ID: 31300481
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Accuracy of predicting genomic breeding values for residual feed intake in Angus and Charolais beef cattle.
    Chen L; Schenkel F; Vinsky M; Crews DH; Li C
    J Anim Sci; 2013 Oct; 91(10):4669-78. PubMed ID: 24078618
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances.
    Su G; Christensen OF; Janss L; Lund MS
    J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of methods for the implementation of genome-assisted evaluation of Spanish dairy cattle.
    Jiménez-Montero JA; González-Recio O; Alenda R
    J Dairy Sci; 2013 Jan; 96(1):625-34. PubMed ID: 23102955
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix.
    Zhang Z; Liu J; Ding X; Bijma P; de Koning DJ; Zhang Q
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20844593
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-enabled methods for predicting litter size in pigs: a comparison.
    Tusell L; Pérez-Rodríguez P; Forni S; Wu XL; Gianola D
    Animal; 2013 Nov; 7(11):1739-49. PubMed ID: 23880322
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inferring genetic values for quantitative traits non-parametrically.
    Gianola D; de los Campos G
    Genet Res (Camb); 2008 Dec; 90(6):525-40. PubMed ID: 19123970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolomics analysis and metabolite-agronomic trait associations using kernels of wheat (Triticum aestivum) recombinant inbred lines.
    Shi T; Zhu A; Jia J; Hu X; Chen J; Liu W; Ren X; Sun D; Fernie AR; Cui F; Chen W
    Plant J; 2020 Jul; 103(1):279-292. PubMed ID: 32073701
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis.
    Jung WJ; Lee YJ; Kang CS; Seo YW
    BMC Plant Biol; 2021 Sep; 21(1):418. PubMed ID: 34517837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.