These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 23764173)

  • 61. Torso flexion loads and the fatigue failure of human lumbosacral motion segments.
    Gallagher S; Marras WS; Litsky AS; Burr D
    Spine (Phila Pa 1976); 2005 Oct; 30(20):2265-73. PubMed ID: 16227888
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evaluation of spinal internal loads and lumbar curvature under holding static load at different trunk and knee positions.
    Kahrizi S; Parnianpour M; Firoozabadi SM; Kasemnejad A; Karimi E
    Pak J Biol Sci; 2007 Apr; 10(7):1036-43. PubMed ID: 19070047
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine.
    Bell KM; Yan Y; Debski RE; Sowa GA; Kang JD; Tashman S
    J Biomech; 2016 Jan; 49(2):167-72. PubMed ID: 26708967
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads.
    Osvalder AL; Neumann P; Lövsund P; Nordwall A
    J Biomech; 1993 Oct; 26(10):1227-36. PubMed ID: 8253827
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Adaptation of a clinical fixation device for biomechanical testing of the lumbar spine.
    Bell KM; Oh A; Cook HA; Yan Y; Lee JY
    J Biomech; 2018 Mar; 69():164-168. PubMed ID: 29397109
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Adaptive velocity-based six degree of freedom load control for real-time unconstrained biomechanical testing.
    Lawless IM; Ding B; Cazzolato BS; Costi JJ
    J Biomech; 2014 Sep; 47(12):3241-7. PubMed ID: 25016485
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Validation of a clinical finite element model of the human lumbosacral spine.
    Guan Y; Yoganandan N; Zhang J; Pintar FA; Cusick JF; Wolfla CE; Maiman DJ
    Med Biol Eng Comput; 2006 Aug; 44(8):633-41. PubMed ID: 16937205
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biomechanical comparison of intact lumbar lamb spine and endoscopic discectomized lamb spine.
    Karakaşlı A; Yıldız DV; Kumtepe E; Kızmazoğlu C; Havıtçıoğlu H
    Eklem Hastalik Cerrahisi; 2013; 24(1):33-8. PubMed ID: 23441739
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Constrained testing conditions affect the axial rotation response of lumbar functional spinal units.
    Grassmann S; Oxland TR; Gerich U; Nolte LP
    Spine (Phila Pa 1976); 1998 May; 23(10):1155-62. PubMed ID: 9615368
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Biomechanical design of load simulation in multiple spinal segments].
    Schopphoff E; Phoa T; Birnbaum K
    Biomed Tech (Berl); 2003; 48(7-8):213-6. PubMed ID: 12910862
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Force-deformation response of the lumbar spine: a sagittal plane model of posteroanterior manipulation and mobilization.
    Keller TS; Colloca CJ; Béliveau JG
    Clin Biomech (Bristol, Avon); 2002 Mar; 17(3):185-96. PubMed ID: 11937256
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Biomechanical principles in diarthroses and synarthroses. IV: the mechanics of lumbar vertebrae. A pilot study].
    Nägerl H; Kubein-Meesenburg D; Cotta H; Fanghänel J; Rossow A; Spiering S
    Z Orthop Ihre Grenzgeb; 1995; 133(6):481-91. PubMed ID: 8571648
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Application of the restoring force method for identification of lumbar spine flexion-extension motion under flexion-extension moment.
    Borkowski SL; Ebramzadeh E; Sangiorgio SN; Masri SF
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24556960
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of potting technique on the measurement of six degree-of-freedom viscoelastic properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech Eng; 2015 May; 137(5):054501. PubMed ID: 25646970
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biomechanics of Lumbar Motion-Segments in Dynamic Compression.
    Arun MWJ; Hadagali P; Driesslein K; Curry W; Yoganandan N; Pintar FA
    Stapp Car Crash J; 2017 Nov; 61():1-25. PubMed ID: 29394433
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biomechanical analysis of the thoracolumbar spine under physiological loadings: Experimental motion data corridors for validation of finite element models.
    Couvertier M; Germaneau A; Saget M; Dupré JC; Doumalin P; Brémand F; Hesser F; Brèque C; Roulaud M; Monlezun O; Vendeuvre T; Rigoard P
    Proc Inst Mech Eng H; 2017 Oct; 231(10):975-981. PubMed ID: 28707505
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Estimating lumbar passive stiffness behaviour from subject-specific finite element models and in vivo 6DOF kinematics.
    Affolter C; Kedzierska J; Vielma T; Weisse B; Aiyangar A
    J Biomech; 2020 Mar; 102():109681. PubMed ID: 32151379
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A mechanical model of human spinal motion segments.
    Wilke HJ; Russo G; Schmitt H; Claes LE
    Biomed Tech (Berl); 1997 Nov; 42(11):327-31. PubMed ID: 9435146
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of posture and structure on three-dimensional coupled rotations in the lumbar spine. A biomechanical analysis.
    Cholewicki J; Crisco JJ; Oxland TR; Yamamoto I; Panjabi MM
    Spine (Phila Pa 1976); 1996 Nov; 21(21):2421-8. PubMed ID: 8923626
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts.
    Cripton PA; Bruehlmann SB; Orr TE; Oxland TR; Nolte LP
    J Biomech; 2000 Dec; 33(12):1559-68. PubMed ID: 11006379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.