These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23764234)

  • 1. Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes.
    Li J; Armstrong BL; Daniel C; Kiggans J; Wood DL
    J Colloid Interface Sci; 2013 Sep; 405():118-24. PubMed ID: 23764234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of LiFePO4 nanoparticle suspensions with polyethyleneimine for aqueous processing.
    Li J; Armstrong BL; Kiggans J; Daniel C; Wood DL
    Langmuir; 2012 Feb; 28(8):3783-90. PubMed ID: 22292836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Modification of the LiFePO
    Tron A; Jo YN; Oh SH; Park YD; Mun J
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12391-12399. PubMed ID: 28322545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance optimization of freestanding MWCNT-LiFePO
    Susantyoko RA; Alkindi TS; Kanagaraj AB; An B; Alshibli H; Choi D; AlDahmani S; Fadaq H; Almheiri S
    RSC Adv; 2018 May; 8(30):16566-16573. PubMed ID: 35540508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-shell LiFePO4 /carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes.
    Ha SH; Lee YJ
    Chemistry; 2015 Jan; 21(5):2132-8. PubMed ID: 25430976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical in battery polymerization of poly(alkylenedioxythiophene) over lithium iron phosphate for high-performance cathodes.
    Cíntora-Juárez D; Pérez-Vicente C; Ahmad S; Tirado JL
    Phys Chem Chem Phys; 2014 Oct; 16(38):20724-30. PubMed ID: 25162487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes.
    Fei H; Peng Z; Yang Y; Li L; Raji AR; Samuel EL; Tour JM
    Chem Commun (Camb); 2014 Jul; 50(54):7117-9. PubMed ID: 24853817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sucrose-assisted loading of LiFePO4 nanoparticles on graphene for high-performance lithium-ion battery cathodes.
    Wu Y; Wen Z; Feng H; Li J
    Chemistry; 2013 Apr; 19(18):5631-6. PubMed ID: 23468054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersion properties of aqueous-based LiFePO4 pastes and their electrochemical performance for lithium batteries.
    Lee JH; Kim JS; Kim YC; Zang DS; Paik U
    Ultramicroscopy; 2008 Sep; 108(10):1256-9. PubMed ID: 18550285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery.
    Wang X; Zhang W; Huang Y; Xia T; Lian Y
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6494-7. PubMed ID: 27427742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes.
    Ma Z; Fan Y; Shao G; Wang G; Song J; Liu T
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2937-43. PubMed ID: 25584530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate-dependent, Li-ion insertion/deinsertion behavior of LiFePO4 cathodes in commercial 18650 LiFePO4 cells.
    Liu Q; He H; Li ZF; Liu Y; Ren Y; Lu W; Lu J; Stach EA; Xie J
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3282-9. PubMed ID: 24521163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction.
    Li D; Huang Y; Sharma N; Chen Z; Jia D; Guo Z
    Phys Chem Chem Phys; 2012 Mar; 14(10):3634-9. PubMed ID: 22311165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Columnar order in jammed LiFePO4 cathodes: ion transport catastrophe and its mitigation.
    Smith KC; Mukherjee PP; Fisher TS
    Phys Chem Chem Phys; 2012 May; 14(19):7040-50. PubMed ID: 22476114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ carbon coated LiFePO4/C microrods with improved lithium intercalation behavior.
    Bhuvaneswari D; Kalaiselvi N
    Phys Chem Chem Phys; 2014 Jan; 16(4):1469-78. PubMed ID: 24301135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-aqueous carbon black suspensions for lithium-based redox flow batteries: rheology and simultaneous rheo-electrical behavior.
    Youssry M; Madec L; Soudan P; Cerbelaud M; Guyomard D; Lestriez B
    Phys Chem Chem Phys; 2013 Sep; 15(34):14476-86. PubMed ID: 23892887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries.
    Ni H; Liu J; Fan LZ
    Nanoscale; 2013 Mar; 5(5):2164-8. PubMed ID: 23389625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery.
    Qiu L; Shao Z; Yang M; Wang W; Wang F; Xie L; Lv S; Zhang Y
    Carbohydr Polym; 2013 Jul; 96(1):240-5. PubMed ID: 23688476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the Affinity Between Carbon-Coated LiFePO4/C Electrodes and Conventional Organic Electrolyte by Spontaneous Grafting of a Benzene-Trifluoromethylsulfonimide Moiety.
    Delaporte N; Perea A; Lebègue E; Ladouceur S; Zaghib K; Bélanger D
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18519-29. PubMed ID: 26186016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.