BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23764291)

  • 1. A mechanistic understanding of the role of feedforward inhibition in the mammalian sound localization circuitry.
    Roberts MT; Seeman SC; Golding NL
    Neuron; 2013 Jun; 78(5):923-35. PubMed ID: 23764291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional hearing by linear summation of binaural inputs at the medial superior olive.
    van der Heijden M; Lorteije JA; Plauška A; Roberts MT; Golding NL; Borst JG
    Neuron; 2013 Jun; 78(5):936-48. PubMed ID: 23764292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition.
    Pecka M; Brand A; Behrend O; Grothe B
    J Neurosci; 2008 Jul; 28(27):6914-25. PubMed ID: 18596166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturation of glycinergic inhibition in the gerbil medial superior olive after hearing onset.
    Magnusson AK; Kapfer C; Grothe B; Koch U
    J Physiol; 2005 Oct; 568(Pt 2):497-512. PubMed ID: 16096336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of gerbil medial superior olive: integration of temporally delayed excitation and inhibition at physiological temperature.
    Chirila FV; Rowland KC; Thompson JM; Spirou GA
    J Physiol; 2007 Oct; 584(Pt 1):167-90. PubMed ID: 17690144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus.
    Felix RA; Fridberger A; Leijon S; Berrebi AS; Magnusson AK
    J Neurosci; 2011 Aug; 31(35):12566-78. PubMed ID: 21880918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic spike thresholds during synaptic integration preserve and enhance temporal response properties in the avian cochlear nucleus.
    Howard MA; Rubel EW
    J Neurosci; 2010 Sep; 30(36):12063-74. PubMed ID: 20826669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional localization of neurotransmitter receptors and synaptic inputs to mature neurons of the medial superior olive.
    Couchman K; Grothe B; Felmy F
    J Neurophysiol; 2012 Feb; 107(4):1186-98. PubMed ID: 22131383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem.
    Magnusson AK; Park TJ; Pecka M; Grothe B; Koch U
    Neuron; 2008 Jul; 59(1):125-37. PubMed ID: 18614034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relative contributions of MNTB and LNTB neurons to inhibition in the medial superior olive assessed through single and paired recordings.
    Roberts MT; Seeman SC; Golding NL
    Front Neural Circuits; 2014; 8():49. PubMed ID: 24860434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic inhibition influences the temporal coding properties of medial superior olivary neurons: an in vitro study.
    Grothe B; Sanes DH
    J Neurosci; 1994 Mar; 14(3 Pt 2):1701-9. PubMed ID: 8126564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An essential role for modulation of hyperpolarization-activated current in the development of binaural temporal precision.
    Khurana S; Liu Z; Lewis AS; Rosa K; Chetkovich D; Golding NL
    J Neurosci; 2012 Feb; 32(8):2814-23. PubMed ID: 22357864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic interaction of Ih and IK-LVA during trains of synaptic potentials in principal neurons of the medial superior olive.
    Khurana S; Remme MW; Rinzel J; Golding NL
    J Neurosci; 2011 Jun; 31(24):8936-47. PubMed ID: 21677177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrangement of Excitatory Synaptic Inputs on Dendrites of the Medial Superior Olive.
    Callan AR; Heß M; Felmy F; Leibold C
    J Neurosci; 2021 Jan; 41(2):269-283. PubMed ID: 33208467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-Dependent Calcium Signaling in Neurons of the Medial Superior Olive during Late Postnatal Development.
    Franzen DL; Gleiss SA; Kellner CJ; Kladisios N; Felmy F
    J Neurosci; 2020 Feb; 40(8):1689-1700. PubMed ID: 31949105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory response properties in the superior paraolivary nucleus of the gerbil.
    Behrend O; Brand A; Kapfer C; Grothe B
    J Neurophysiol; 2002 Jun; 87(6):2915-28. PubMed ID: 12037195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiking neurons learning phase delays: how mammals may develop auditory time-difference sensitivity.
    Leibold C; van Hemmen JL
    Phys Rev Lett; 2005 Apr; 94(16):168102. PubMed ID: 15904267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cooperation of sustained and phasic inhibitions increases the contrast of ITD-tuning in low-frequency neurons of the chick nucleus laminaris.
    Yamada R; Okuda H; Kuba H; Nishino E; Ishii TM; Ohmori H
    J Neurosci; 2013 Feb; 33(9):3927-38. PubMed ID: 23447603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weak action potential backpropagation is associated with high-frequency axonal firing capability in principal neurons of the gerbil medial superior olive.
    Scott LL; Hage TA; Golding NL
    J Physiol; 2007 Sep; 583(Pt 2):647-61. PubMed ID: 17627992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current.
    Gai Y; Doiron B; Kotak V; Rinzel J
    J Neurophysiol; 2009 Dec; 102(6):3447-60. PubMed ID: 19812289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.