BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 23764296)

  • 1. Focal corticothalamic sources during generalized absence seizures: a MEG study.
    Tenney JR; Fujiwara H; Horn PS; Jacobson SE; Glauser TA; Rose DF
    Epilepsy Res; 2013 Sep; 106(1-2):113-22. PubMed ID: 23764296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Onset and propagation of spike and slow wave discharges in human absence epilepsy: A MEG study.
    Westmijse I; Ossenblok P; Gunning B; van Luijtelaar G
    Epilepsia; 2009 Dec; 50(12):2538-48. PubMed ID: 19519798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are "generalized" seizures truly generalized? Evidence of localized mesial frontal and frontopolar discharges in absence.
    Holmes MD; Brown M; Tucker DM
    Epilepsia; 2004 Dec; 45(12):1568-79. PubMed ID: 15571515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping preictal networks preceding childhood absence seizures using magnetoencephalography.
    Jacobs-Brichford E; Horn PS; Tenney JR
    J Child Neurol; 2014 Oct; 29(10):1312-9. PubMed ID: 24532809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic magnetic source imaging of absence seizure initialization and propagation: a magnetoencephalography study.
    Miao A; Tang L; Xiang J; Guan Q; Ge H; Liu H; Wu T; Chen Q; Yang L; Lu X; Hu Z; Wang X
    Epilepsy Res; 2014 Mar; 108(3):468-80. PubMed ID: 24534760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy.
    Li Q; Luo C; Yang T; Yao Z; He L; Liu L; Xu H; Gong Q; Yao D; Zhou D
    Epilepsy Res; 2009 Dec; 87(2-3):160-8. PubMed ID: 19836209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dense array EEG: methodology and new hypothesis on epilepsy syndromes.
    Holmes MD
    Epilepsia; 2008; 49 Suppl 3():3-14. PubMed ID: 18304251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low- and high-frequency oscillations reveal distinct absence seizure networks.
    Tenney JR; Fujiwara H; Horn PS; Vannest J; Xiang J; Glauser TA; Rose DF
    Ann Neurol; 2014 Oct; 76(4):558-67. PubMed ID: 25042348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peri-ictal network dynamics of spike-wave discharges: phase and spectral characteristics.
    Lüttjohann A; Schoffelen JM; van Luijtelaar G
    Exp Neurol; 2013 Jan; 239():235-47. PubMed ID: 23124095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats.
    Sitnikova E; van Luijtelaar G
    Epilepsia; 2007 Dec; 48(12):2296-311. PubMed ID: 18196621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory.
    Meeren H; van Luijtelaar G; Lopes da Silva F; Coenen A
    Arch Neurol; 2005 Mar; 62(3):371-6. PubMed ID: 15767501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total intravenous anesthesia affecting spike sources of magnetoencephalography in pediatric epilepsy patients: focal seizures vs. non-focal seizures.
    Hanaya R; Okamoto H; Fujimoto A; Ochi A; Go C; Snead CO; Widjaja E; Chuang SH; Kemp SM; Otsubo H
    Epilepsy Res; 2013 Aug; 105(3):326-36. PubMed ID: 23562603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The core network in absence epilepsy. Differences in cortical and thalamic BOLD response.
    Carney PW; Masterton RA; Harvey AS; Scheffer IE; Berkovic SF; Jackson GD
    Neurology; 2010 Sep; 75(10):904-11. PubMed ID: 20702791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical and subcortical contributions to absence seizure onset examined with EEG/fMRI.
    Szaflarski JP; DiFrancesco M; Hirschauer T; Banks C; Privitera MD; Gotman J; Holland SK
    Epilepsy Behav; 2010 Aug; 18(4):404-13. PubMed ID: 20580319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats.
    Meeren HK; Pijn JP; Van Luijtelaar EL; Coenen AM; Lopes da Silva FH
    J Neurosci; 2002 Feb; 22(4):1480-95. PubMed ID: 11850474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Thalamus Versus Cortex in Epilepsy: Evidence from Human Ictal Centromedian Recordings in Patients Assessed for Deep Brain Stimulation.
    Martín-López D; Jiménez-Jiménez D; Cabañés-Martínez L; Selway RP; Valentín A; Alarcón G
    Int J Neural Syst; 2017 Nov; 27(7):1750010. PubMed ID: 28030998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An EEG-fMRI Study on the Termination of Generalized Spike-And-Wave Discharges in Absence Epilepsy.
    Benuzzi F; Ballotta D; Mirandola L; Ruggieri A; Vaudano AE; Zucchelli M; Ferrari E; Nichelli PF; Meletti S
    PLoS One; 2015; 10(7):e0130943. PubMed ID: 26154563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Granger causality: cortico-thalamic interdependencies during absence seizures in WAG/Rij rats.
    Sitnikova E; Dikanev T; Smirnov D; Bezruchko B; van Luijtelaar G
    J Neurosci Methods; 2008 May; 170(2):245-54. PubMed ID: 18313761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-brain MEG connectivity-based analyses reveals critical hubs in childhood absence epilepsy.
    Youssofzadeh V; Agler W; Tenney JR; Kadis DS
    Epilepsy Res; 2018 Sep; 145():102-109. PubMed ID: 29936300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal mapping of interictal epileptiform discharges in human absence epilepsy: A MEG study.
    Rozendaal YJ; van Luijtelaar G; Ossenblok PP
    Epilepsy Res; 2016 Jan; 119():67-76. PubMed ID: 26681490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.