These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 23764572)

  • 1. Operation of remote mobile sensors for security of drinking water distribution systems.
    Perelman BL; Ostfeld A
    Water Res; 2013 Sep; 47(13):4217-26. PubMed ID: 23764572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.
    Oliker N; Ostfeld A
    Water Res; 2015 Sep; 80():47-58. PubMed ID: 25996752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time contaminant detection and classification in a drinking water pipe using conventional water quality sensors: techniques and experimental results.
    Jeffrey Yang Y; Haught RC; Goodrich JA
    J Environ Manage; 2009 Jun; 90(8):2494-506. PubMed ID: 19269081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated logit model for contamination event detection in water distribution systems.
    Housh M; Ostfeld A
    Water Res; 2015 May; 75():210-23. PubMed ID: 25770443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence monitoring at a recycled water treatment plant and associated dual distribution system--implications for cross-connection detection.
    Hambly AC; Henderson RK; Storey MV; Baker A; Stuetz RM; Khan SJ
    Water Res; 2010 Oct; 44(18):5323-33. PubMed ID: 20655084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy scavenging for long-term deployable wireless sensor networks.
    MathĂșna CO; O'Donnell T; Martinez-Catala RV; Rohan J; O'Flynn B
    Talanta; 2008 May; 75(3):613-23. PubMed ID: 18585122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal sensor placement for detecting organophosphate intrusions into water distribution systems.
    Ohar Z; Lahav O; Ostfeld A
    Water Res; 2015 Apr; 73():193-203. PubMed ID: 25662513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-pipe water quality monitoring in water supply systems under steady and unsteady state flow conditions: a quantitative assessment.
    Aisopou A; Stoianov I; Graham NJ
    Water Res; 2012 Jan; 46(1):235-46. PubMed ID: 22094001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting the best location of water quality sensors in water distribution networks by considering the importance of nodes and contaminations using NSGA-III (case study: Zahedan water distribution network, Iran).
    Harif S; Azizyan G; Dehghani Darmian M; Givehchi M
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):53229-53252. PubMed ID: 36853532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllability analysis as a pre-selection method for sensor placement in water distribution systems.
    Diao K; Rauch W
    Water Res; 2013 Oct; 47(16):6097-108. PubMed ID: 23948563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surveillance for waterborne disease outbreaks associated with drinking water---United States, 2007--2008.
    Brunkard JM; Ailes E; Roberts VA; Hill V; Hilborn ED; Craun GF; Rajasingham A; Kahler A; Garrison L; Hicks L; Carpenter J; Wade TJ; Beach MJ; Yoder Msw JS;
    MMWR Surveill Summ; 2011 Sep; 60(12):38-68. PubMed ID: 21937977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing the remote sensing-based early warning system for monitoring TSS concentrations in Lake Mead.
    Imen S; Chang NB; Yang YJ
    J Environ Manage; 2015 Sep; 160():73-89. PubMed ID: 26093101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of pollutant distribution based on mobile sensor networks.
    Wang Y; Wang Y; Zhang X; Wang D; Yan J
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):11413-11424. PubMed ID: 31965502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust human activity and sensor location corecognition via sparse signal representation.
    Xu W; Zhang M; Sawchuk AA; Sarrafzadeh M
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3169-76. PubMed ID: 22875238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of sensors for dam water quality analysis - a prototype.
    Rose L; Mary XA; Karthik C
    Water Sci Technol; 2021 Nov; 84(10-11):2842-2856. PubMed ID: 34850698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Advances in sensor node and wireless communication technology of body sensor network].
    Lin W; Lei S; Wei C; Li C; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):568-73. PubMed ID: 22826960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wireless implantable sensor network system for in vivo monitoring of physiological signals.
    Fu X; Chen W; Ye S; Tu Y; Tang Y; Li D; Chen H; Jiang K
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):577-84. PubMed ID: 21536536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the global resilience of water quality sensor placement strategies within water distribution systems.
    Zhang Q; Zheng F; Kapelan Z; Savic D; He G; Ma Y
    Water Res; 2020 Apr; 172():115527. PubMed ID: 32004913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coupled classification - evolutionary optimization model for contamination event detection in water distribution systems.
    Oliker N; Ostfeld A
    Water Res; 2014 Mar; 51():234-45. PubMed ID: 24268294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of a battery of rapid toxicity sensors for drinking water evaluation.
    van der Schalie WH; James RR; Gargan TP
    Biosens Bioelectron; 2006 Jul; 22(1):18-27. PubMed ID: 16406499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.