These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 23764574)
1. Physico-chemical study for zinc removal and recovery onto native/chemically modified Aspergillus flavus NA9 from industrial effluent. Aftab K; Akhtar K; Jabbar A; Bukhari IH; Noreen R Water Res; 2013 Sep; 47(13):4238-46. PubMed ID: 23764574 [TBL] [Abstract][Full Text] [Related]
2. Highly efficient biosorptive removal of lead from industrial effluent. Sao K; Pandey M; Pandey PK; Khan F Environ Sci Pollut Res Int; 2017 Aug; 24(22):18410-18420. PubMed ID: 28643279 [TBL] [Abstract][Full Text] [Related]
3. Fungal strains isolation, identification and application for the recovery of Zn(II) ions. Aftab K; Akhtar K; Kausar A; Khaliq S; Nisar N; Umbreen H; Iqbal M J Photochem Photobiol B; 2017 Oct; 175():282-290. PubMed ID: 28923600 [TBL] [Abstract][Full Text] [Related]
4. Bioremoval of heavy metals from aqueous solution using dead biomass of indigenous fungi derived from fertilizer industry effluents: isotherm models evaluation and batch optimization. El-Gendy MMAA; Abdel-Moniem SM; Ammar NS; El-Bondkly AMA Biometals; 2023 Dec; 36(6):1307-1329. PubMed ID: 37428423 [TBL] [Abstract][Full Text] [Related]
5. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Peng SH; Wang R; Yang LZ; He L; He X; Liu X Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165 [TBL] [Abstract][Full Text] [Related]
6. Biosorption characteristics of Bacillus gibsonii S-2 waste biomass for removal of lead (II) from aqueous solution. Zhang B; Fan R; Bai Z; Wang S; Wang L; Shi J Environ Sci Pollut Res Int; 2013 Mar; 20(3):1367-73. PubMed ID: 22961488 [TBL] [Abstract][Full Text] [Related]
7. Adsorption of colored pollutants from distillery spent wash by native and treated fungus: neurospora intermedia. Kaushik G; Thakur IS Environ Sci Pollut Res Int; 2013 Feb; 20(2):1070-8. PubMed ID: 22565985 [TBL] [Abstract][Full Text] [Related]
8. Removal and recovery of lead (Pb2+) from industrial effluent using indigenous and tailor-made Aureobasidium sp. RBSS-303. Aftab K; Akhtar K; Anjum F Water Sci Technol; 2015; 71(1):139-48. PubMed ID: 25607681 [TBL] [Abstract][Full Text] [Related]
9. Zn(II) biosorption properties of Botrytis cinerea biomass. Tunali S; Akar T J Hazard Mater; 2006 Apr; 131(1-3):137-45. PubMed ID: 16239066 [TBL] [Abstract][Full Text] [Related]
10. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study. Gupta VK; Rastogi A Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684 [TBL] [Abstract][Full Text] [Related]
11. Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes. Singha B; Das SK Colloids Surf B Biointerfaces; 2013 Jul; 107():97-106. PubMed ID: 23466548 [TBL] [Abstract][Full Text] [Related]
12. Biosorption of lead ions from aqueous effluents by rapeseed biomass. Morosanu I; Teodosiu C; Paduraru C; Ibanescu D; Tofan L N Biotechnol; 2017 Oct; 39(Pt A):110-124. PubMed ID: 27576101 [TBL] [Abstract][Full Text] [Related]
13. Removal of Pb²⁺ from aqueous system by live Oscillatoria laete-virens (Crouan and Crouan) Gomont isolated from industrial effluents. Miranda J; Krishnakumar G; D'Silva A World J Microbiol Biotechnol; 2012 Oct; 28(10):3053-65. PubMed ID: 22806744 [TBL] [Abstract][Full Text] [Related]
14. Treatment of Pb ion contaminated wastewater using hazardous parthenium (P. hysterophorus L.) weed. Samal K; Mohanty K; Das C Water Sci Technol; 2017 Jan; 75(2):427-438. PubMed ID: 28112670 [TBL] [Abstract][Full Text] [Related]
15. Structural Changes of Krishna Kanamarlapudi SLR; Muddada S Pol J Microbiol; 2019 Dec; 68(4):549-558. PubMed ID: 31880898 [TBL] [Abstract][Full Text] [Related]
16. The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium(II) biosorption: equilibrium and kinetic modelling. Bayo J; Esteban G; Castillo J Environ Technol; 2012; 33(7-9):761-72. PubMed ID: 22720399 [TBL] [Abstract][Full Text] [Related]
17. Use of Rhizopus oligosporus produced from food processing wastewater as a biosorbent for Cu(II) ions removal from the aqueous solutions. Ozsoy HD; Kumbur H; Saha B; van Leeuwen JH Bioresour Technol; 2008 Jul; 99(11):4943-8. PubMed ID: 17964150 [TBL] [Abstract][Full Text] [Related]
18. Kinetic process of the biosorption of Cu(II), Ni(II) and Cr(VI) by waste Zhou K; Zhou Y; Zhou H; Cheng H; Xu G Environ Technol; 2023 May; 44(12):1730-1750. PubMed ID: 34842065 [TBL] [Abstract][Full Text] [Related]
19. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste. Kausar A; Bhatti HN; MacKinnon G Colloids Surf B Biointerfaces; 2013 Nov; 111():124-33. PubMed ID: 23787279 [TBL] [Abstract][Full Text] [Related]
20. Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Yuvaraja G; Krishnaiah N; Subbaiah MV; Krishnaiah A Colloids Surf B Biointerfaces; 2014 Feb; 114():75-81. PubMed ID: 24176885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]