These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 23764581)

  • 21. Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications.
    Nguyen TT; Edelen A; Neighbors B; Sabatini DA
    J Colloid Interface Sci; 2010 Aug; 348(2):498-504. PubMed ID: 20471022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of sludge properties in a pilot-scale UASB reactor for sewage treatment in a temperate region.
    Syutsubo K; Yoochatchaval W; Tsushima I; Araki N; Kubota K; Onodera T; Takahashi M; Yamaguchi T; Yoneyama Y
    Water Sci Technol; 2011; 64(10):1959-66. PubMed ID: 22105115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of ultrasonic waves on the removal of different oil components from oily sludge.
    Gao Y; Ding R; Wu S; Wu Y; Zhang Y; Yang M
    Environ Technol; 2015; 36(13-16):1771-5. PubMed ID: 25622512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils.
    Xia WJ; Luo ZB; Dong HP; Yu L; Cui QF; Bi YQ
    Appl Biochem Biotechnol; 2012 Mar; 166(5):1148-66. PubMed ID: 22198867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhamnolipid emulsifying activity and emulsion stability: pH rules.
    Lovaglio RB; dos Santos FJ; Jafelicci M; Contiero J
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):301-5. PubMed ID: 21454058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acceleration of organic removal and electricity generation from dewatered oily sludge in a bioelectrochemical system by rhamnolipid addition.
    Zhang Y; Zhao Q; Jiang J; Wang K; Wei L; Ding J; Yu H
    Bioresour Technol; 2017 Nov; 243():820-827. PubMed ID: 28724253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosurfactant assisted recovery of the C
    Nkhalambayausi Chirwa EM; Mampholo CT; Fayemiwo OM; Bezza FA
    J Environ Manage; 2017 Jul; 196():261-269. PubMed ID: 28288360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses.
    Zhao S; Zhou X; Wang C; Jia H
    Environ Technol; 2018 Nov; 39(21):2715-2723. PubMed ID: 28791935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research on the application of horseradish peroxidase and hydrogen peroxide to the oil removal of oily water.
    Li ZL; Liu W; Chen XF; Shang WL
    Water Sci Technol; 2009; 59(9):1751-8. PubMed ID: 19448310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Primary and secondary sludge treatment using ionizing radiation technology in Alexandria, Egypt.
    Nakhla SF; Arafa A; Naga IS; Mohamed M; Alsherbeny HA; Fahmi NM; Hosny H; Moussa S
    Appl Radiat Isot; 2022 Mar; 181():110101. PubMed ID: 35065517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of Process Parameters of Rhamnolipid Treatment of Oily Sludge Based on Response Surface Methodology.
    Liu C; Xu Q; Hu X; Zhang S; Zhang P; You Y
    ACS Omega; 2020 Nov; 5(45):29333-29341. PubMed ID: 33225164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sludge dewatering using centrifuge with thermal/polymer conditioning.
    Lin CF; Shien Y
    Water Sci Technol; 2001; 44(10):321-5. PubMed ID: 11794673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facilitating the natural semi-drying of oily sludge by changing the form of water.
    Liu Y; Wang M; Chen M; Zhu M; Liao M
    PLoS One; 2021; 16(1):e0245430. PubMed ID: 33444389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of ultrasound on oily sludge deoiling.
    Xu N; Wang W; Han P; Lu X
    J Hazard Mater; 2009 Nov; 171(1-3):914-7. PubMed ID: 19683866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of full-scale dewatering results of sewage sludges by the physical water distribution.
    Kopp J; Dichtl N
    Water Sci Technol; 2001; 43(11):135-43. PubMed ID: 11443955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering.
    Mulder JW; van Loosdrecht MC; Hellinga C; van Kempen R
    Water Sci Technol; 2001; 43(11):127-34. PubMed ID: 11443954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electro-kinetic dewatering of oily sludges.
    Yang L; Nakhla G; Bassi A
    J Hazard Mater; 2005 Oct; 125(1-3):130-40. PubMed ID: 16005146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly efficient secondary dewatering of dewatered sewage sludge using low boiling point solvents.
    He C; Chena CL; Xu Z; Wang JY
    Environ Technol; 2014; 35(1-4):95-103. PubMed ID: 24600846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste.
    Nitschke M; Costa SG; Contiero J
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2066-74. PubMed ID: 19649781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.