These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23765038)

  • 1. Monte Carlo simulations of a polymer chain conformation. The effectiveness of local moves algorithms and estimation of entropy.
    Mańka A; Nowicki W; Nowicka G
    J Mol Model; 2013 Sep; 19(9):3659-70. PubMed ID: 23765038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models.
    Liu Z; Chan HS
    J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of star-branched and linear chains in confined space. A Monte-Carlo study.
    Romiszowski P; Sikorski A
    J Mol Model; 2005 Sep; 11(4-5):335-40. PubMed ID: 16007434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of dense polymer melts using event chain algorithms.
    Kampmann TA; Boltz HH; Kierfeld J
    J Chem Phys; 2015 Jul; 143(4):044105. PubMed ID: 26233105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion of a branched polymer chain in confinement: a Monte Carlo study.
    Romiszowski P; Sikorski A
    J Chem Phys; 2006 Sep; 125(10):104901. PubMed ID: 16999544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Avoiding Random Walks as a Model to Study Athermal Linear Polymers under Extreme Plate Confinement.
    Parreño O; Ramos PM; Karayiannis NC; Laso M
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32260075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Star-branched polymers in an adsorbing slit: a Monte Carlo study.
    Romiszowski P; Sikorski A
    J Chem Phys; 2005 Sep; 123(10):104905. PubMed ID: 16178622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation studies of ring polymers at athermal and theta conditions.
    Fuereder I; Zifferer G
    J Chem Phys; 2011 Nov; 135(18):184906. PubMed ID: 22088080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of lattice models for single polymer systems.
    Hsu HP
    J Chem Phys; 2014 Oct; 141(16):164903. PubMed ID: 25362337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo studies of two-dimensional polymer-solvent systems.
    Polanowski P; Jeszka JK; Sikorski A
    J Mol Model; 2017 Feb; 23(2):63. PubMed ID: 28185113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chain conformations of ring polymers under theta conditions studied by Monte Carlo simulation.
    Suzuki J; Takano A; Matsushita Y
    J Chem Phys; 2013 Nov; 139(18):184904. PubMed ID: 24320301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative study of fluctuation effects by fast lattice Monte Carlo simulations: compression of grafted homopolymers.
    Zhang P; Wang Q
    J Chem Phys; 2014 Jan; 140(4):044904. PubMed ID: 25669580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A toy model for nucleus-sized crowding confinement.
    Shew CY; Yoshikawa K
    J Phys Condens Matter; 2015 Feb; 27(6):064118. PubMed ID: 25563689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of the entropy of random coil polymers with the hypothetical scanning Monte Carlo method.
    White RP; Meirovitch H
    J Chem Phys; 2005 Dec; 123(21):214908. PubMed ID: 16356071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of branched confined polymers.
    Sikorski A; Romiszowski P
    J Chem Phys; 2004 Apr; 120(15):7206-11. PubMed ID: 15267628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LMProt: an efficient algorithm for Monte Carlo sampling of protein conformational space.
    da Silva RA; Degrève L; Caliri A
    Biophys J; 2004 Sep; 87(3):1567-77. PubMed ID: 15345537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological constraint in ring polymers under theta conditions studied by Monte Carlo simulation.
    Suzuki J; Takano A; Matsushita Y
    J Chem Phys; 2013 Jan; 138(2):024902. PubMed ID: 23320716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics.
    Meirovitch H
    J Mol Recognit; 2010; 23(2):153-72. PubMed ID: 19650071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational entropy of a polymer chain grafted to rough surfaces.
    Nowicki W; Nowicka G; Dokowicz M; Mańka A
    J Mol Model; 2013 Jan; 19(1):337-48. PubMed ID: 22918701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible polyelectrolyte simulations at the Poisson-Boltzmann level: a comparison of the kink-jump and multigrid configurational-bias Monte Carlo methods.
    Tsonchev S; Coalson RD; Liu A; Beck TL
    J Chem Phys; 2004 May; 120(20):9817-21. PubMed ID: 15267998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.