These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23765326)

  • 1. Behavioral and neural differences during two versions of cognitive shifting tasks in young children and adults.
    Moriguchi Y; Hiraki K
    Dev Psychobiol; 2014 May; 56(4):761-9. PubMed ID: 23765326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What visual information do children and adults consider while switching between tasks? Eye-tracking investigation of cognitive flexibility development.
    Chevalier N; Blaye A; Dufau S; Lucenet J
    Dev Psychol; 2010 Jul; 46(4):955-72. PubMed ID: 20604615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential frontal activation during exogenous and endogenous orientation of visuospatial attention. A near-infrared spectroscopy study.
    Takahashi M; Ikegami M
    Neuropsychobiology; 2008; 58(2):55-64. PubMed ID: 18832860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medial prefrontal activity during shifting under novel situations.
    Konishi S; Hirose S; Jimura K; Chikazoe J; Watanabe T; Kimura HM; Miyashita Y
    Neurosci Lett; 2010 Nov; 484(3):182-6. PubMed ID: 20732385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive control in the posterior frontolateral cortex: evidence from common activations in task coordination, interference control, and working memory.
    Derrfuss J; Brass M; von Cramon DY
    Neuroimage; 2004 Oct; 23(2):604-12. PubMed ID: 15488410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal brain dynamics during preparatory set shifting: MEG evidence.
    Periáñez JA; Maestú F; Barceló F; Fernández A; Amo C; Ortiz Alonso T
    Neuroimage; 2004 Feb; 21(2):687-95. PubMed ID: 14980570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient activation of inferior prefrontal cortex during cognitive set shifting.
    Konishi S; Nakajima K; Uchida I; Kameyama M; Nakahara K; Sekihara K; Miyashita Y
    Nat Neurosci; 1998 May; 1(1):80-4. PubMed ID: 10195114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural origin of cognitive shifting in young children.
    Moriguchi Y; Hiraki K
    Proc Natl Acad Sci U S A; 2009 Apr; 106(14):6017-21. PubMed ID: 19332783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of both prefrontal and inferior parietal cortex in dual-task performance.
    Collette F; Olivier L; Van der Linden M; Laureys S; Delfiore G; Luxen A; Salmon E
    Brain Res Cogn Brain Res; 2005 Jul; 24(2):237-51. PubMed ID: 15993762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential superior prefrontal activity on initial versus subsequent shifts in naive subjects.
    Konishi S; Morimoto H; Jimura K; Asari T; Chikazoe J; Yamashita K; Hirose S; Miyashita Y
    Neuroimage; 2008 Jun; 41(2):575-80. PubMed ID: 18417365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two successive neurocognitive processes captured by near-infrared spectroscopy: prefrontal activation during a computerized plus-shaped maze task.
    Miyata H; Watanabe S; Minagawa-Kawai Y
    Brain Res; 2011 Feb; 1374():90-9. PubMed ID: 21172310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lateral and ventromedial prefrontal cortex work as a dynamic integrated system: evidence from FMRI connectivity analysis.
    Longe O; Senior C; Rippon G
    J Cogn Neurosci; 2009 Jan; 21(1):141-54. PubMed ID: 18476765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct control networks for cognition and emotion in the prefrontal cortex.
    Kompus K; Hugdahl K; Ohman A; Marklund P; Nyberg L
    Neurosci Lett; 2009 Dec; 467(2):76-80. PubMed ID: 19818382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection requirements during verb generation: differential recruitment in older and younger adults.
    Persson J; Sylvester CY; Nelson JK; Welsh KM; Jonides J; Reuter-Lorenz PA
    Neuroimage; 2004 Dec; 23(4):1382-90. PubMed ID: 15589102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in prefrontal activity during walking in dual-task situations: a fNIRS study.
    Beurskens R; Helmich I; Rein R; Bock O
    Int J Psychophysiol; 2014 Jun; 92(3):122-8. PubMed ID: 24681355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related differences in cortical recruitment and suppression: implications for cognitive performance.
    Prakash RS; Heo S; Voss MW; Patterson B; Kramer AF
    Behav Brain Res; 2012 Apr; 230(1):192-200. PubMed ID: 22348896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Context processing and cognitive control in children and young adults.
    Lorsbach TC; Reimer JF
    J Genet Psychol; 2008 Mar; 169(1):34-50. PubMed ID: 18476476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.