These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 23765414)
1. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization. Lee E; Kim C; Jang J Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414 [TBL] [Abstract][Full Text] [Related]
2. Energy relay from an unconventional yellow dye to CdS/CdSe quantum dots for enhanced solar cell performance. Narayanan R; Das A; Deepa M; Srivastava AK Chemphyschem; 2013 Dec; 14(17):4010-21. PubMed ID: 24259302 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096 [TBL] [Abstract][Full Text] [Related]
4. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737 [TBL] [Abstract][Full Text] [Related]
5. Quantum Dot Donor-Polymer Acceptor Architecture for a FRET-Enabled Solar Cell. Kokal RK; Raavi SSK; Deepa M ACS Appl Mater Interfaces; 2019 May; 11(20):18395-18403. PubMed ID: 31045337 [TBL] [Abstract][Full Text] [Related]
7. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye. Sadhu S; Patra A Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556 [TBL] [Abstract][Full Text] [Related]
8. Förster resonance energy transfer investigations using quantum-dot fluorophores. Clapp AR; Medintz IL; Mattoussi H Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019 [TBL] [Abstract][Full Text] [Related]
9. Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitivity of time-resolved FRET bioassays. Wegner KD; Lanh PT; Jennings T; Oh E; Jain V; Fairclough SM; Smith JM; Giovanelli E; Lequeux N; Pons T; Hildebrandt N ACS Appl Mater Interfaces; 2013 Apr; 5(8):2881-92. PubMed ID: 23496235 [TBL] [Abstract][Full Text] [Related]
10. Self-assembled quantum dot-sensitized multivalent DNA photonic wires. Boeneman K; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Melinger JS; Ancona M; Stewart MH; Susumu K; Huston A; Medintz IL J Am Chem Soc; 2010 Dec; 132(51):18177-90. PubMed ID: 21141858 [TBL] [Abstract][Full Text] [Related]
11. Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules. Hardzei M; Artemyev M; Molinari M; Troyon M; Sukhanova A; Nabiev I Chemphyschem; 2012 Jan; 13(1):330-5. PubMed ID: 22228648 [TBL] [Abstract][Full Text] [Related]
12. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H; Schöps O; Woggon U; Niemeyer CM J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889 [TBL] [Abstract][Full Text] [Related]
13. Built-in quantum dot antennas in dye-sensitized solar cells. Buhbut S; Itzhakov S; Tauber E; Shalom M; Hod I; Geiger T; Garini Y; Oron D; Zaban A ACS Nano; 2010 Mar; 4(3):1293-8. PubMed ID: 20155968 [TBL] [Abstract][Full Text] [Related]
14. Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer. Yang L; Leung WW; Wang J Nanoscale; 2013 Aug; 5(16):7493-8. PubMed ID: 23831867 [TBL] [Abstract][Full Text] [Related]
15. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots. Samanta A; Walper SA; Susumu K; Dwyer CL; Medintz IL Nanoscale; 2015 May; 7(17):7603-14. PubMed ID: 25804284 [TBL] [Abstract][Full Text] [Related]
16. Förster resonance energy transfer in dye-sensitized solar cells. Basham JI; Mor GK; Grimes CA ACS Nano; 2010 Mar; 4(3):1253-8. PubMed ID: 20307105 [TBL] [Abstract][Full Text] [Related]
17. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells. Zhu G; Pan L; Xu T; Zhao Q; Lu B; Sun Z Nanoscale; 2011 May; 3(5):2188-93. PubMed ID: 21451826 [TBL] [Abstract][Full Text] [Related]
18. A brief overview of some physical studies on the relaxation dynamics and Förster resonance energy transfer of semiconductor quantum dots. Sadhu S; Patra A Chemphyschem; 2013 Aug; 14(12):2641-53. PubMed ID: 23804322 [TBL] [Abstract][Full Text] [Related]
19. Design Rules for High-Efficiency Quantum-Dot-Sensitized Solar Cells: A Multilayer Approach. Shalom M; Buhbut S; Tirosh S; Zaban A J Phys Chem Lett; 2012 Sep; 3(17):2436-41. PubMed ID: 26292129 [TBL] [Abstract][Full Text] [Related]
20. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode. Jiang L; You T; Deng WQ Nanotechnology; 2013 Oct; 24(41):415401. PubMed ID: 24045808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]