These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 23765451)
1. Elementary photoelectronic processes at a porphyrin dye/single-walled TiO2 nanotube hetero-interface in dye-sensitized solar cells: a first-principles study. Dong C; Li X; Zhao W; Jin P; Fan X; Qi J Chemistry; 2013 Jul; 19(30):10046-56. PubMed ID: 23765451 [TBL] [Abstract][Full Text] [Related]
2. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932 [TBL] [Abstract][Full Text] [Related]
3. Synergistic effects of the aspect ratio of TiO2 nanowires and multi-walled carbon nanotube embedment for enhancing photovoltaic performance of dye-sensitized solar cells. Ahn JY; Kim JH; Moon KJ; Park SD; Kim SH Nanoscale; 2013 Aug; 5(15):6842-50. PubMed ID: 23771100 [TBL] [Abstract][Full Text] [Related]
4. Electronic and optical properties of the triphenylamine-based organic dye sensitized TiO2 semiconductor: insight from first principles calculations. Liang J; Zhu C; Cao Z Phys Chem Chem Phys; 2013 Sep; 15(33):13844-51. PubMed ID: 23698651 [TBL] [Abstract][Full Text] [Related]
5. Fe(II)-Polypyridines as Chromophores in Dye-Sensitized Solar Cells: A Computational Perspective. Jakubikova E; Bowman DN Acc Chem Res; 2015 May; 48(5):1441-9. PubMed ID: 25919490 [TBL] [Abstract][Full Text] [Related]
6. Theoretical investigation on structural and electronic properties of organic dye C258 on TiO₂(101) surface in dye-sensitized solar cells. Sun PP; Li QS; Yang LN; Sun ZZ; Li ZS Phys Chem Chem Phys; 2014 Oct; 16(39):21827-37. PubMed ID: 25201320 [TBL] [Abstract][Full Text] [Related]
7. Femtosecond to millisecond studies of electron transfer processes in a donor-(π-spacer)-acceptor series of organic dyes for solar cells interacting with titania nanoparticles and ordered nanotube array films. Ziółek M; Cohen B; Yang X; Sun L; Paulose M; Varghese OK; Grimes CA; Douhal A Phys Chem Chem Phys; 2012 Feb; 14(8):2816-31. PubMed ID: 22258566 [TBL] [Abstract][Full Text] [Related]
8. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2. Duncan WR; Craig CF; Prezhdo OV J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405 [TBL] [Abstract][Full Text] [Related]
9. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394 [TBL] [Abstract][Full Text] [Related]
10. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells. Jeon J; Park YC; Han SS; Goddard WA; Lee YS; Kim H J Phys Chem Lett; 2014 Dec; 5(24):4285-90. PubMed ID: 26273975 [TBL] [Abstract][Full Text] [Related]
11. Adsorption properties of p-methyl red monomeric-to-pentameric dye aggregates on anatase (101) titania surfaces: first-principles calculations of dye/TiO₂ photoanode interfaces for dye-sensitized solar cells. Zhang L; Cole JM ACS Appl Mater Interfaces; 2014 Sep; 6(18):15760-6. PubMed ID: 25148140 [TBL] [Abstract][Full Text] [Related]
12. One-dimensional and (001) facetted nanostructured TiO2 photoanodes for dye-sensitized solar cells. Lin H; Wang X; Hao F Chimia (Aarau); 2013; 67(3):136-41. PubMed ID: 23574952 [TBL] [Abstract][Full Text] [Related]
13. How to Optimize the Interface between Photosensitizers and TiO2 Nanocrystals with Molecular Engineering to Enhance Performances of Dye-Sensitized Solar Cells? Zheng J; Zhang K; Fang Y; Zuo Y; Duan Y; Zhuo Z; Chen X; Yang W; Lin Y; Wong MS; Pan F ACS Appl Mater Interfaces; 2015 Nov; 7(45):25341-51. PubMed ID: 26510212 [TBL] [Abstract][Full Text] [Related]
14. Atomistic mechanism of charge separation upon photoexcitation at the dye-semiconductor interface for photovoltaic applications. Jiao Y; Ding Z; Meng S Phys Chem Chem Phys; 2011 Aug; 13(29):13196-201. PubMed ID: 21709923 [TBL] [Abstract][Full Text] [Related]
15. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes. Wang H; Wang B; Yu J; Hu Y; Xia C; Zhang J; Liu R Sci Rep; 2015 Mar; 5():9305. PubMed ID: 25800933 [TBL] [Abstract][Full Text] [Related]
16. Electron dynamics in dye-sensitized solar cells: effects of surface terminations and defects. Li Z; Zhang X; Lu G J Phys Chem B; 2010 Dec; 114(51):17077-83. PubMed ID: 21133385 [TBL] [Abstract][Full Text] [Related]
17. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Imahori H; Umeyama T; Ito S Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942 [TBL] [Abstract][Full Text] [Related]
18. Effect of Substituents in Catechol Dye Sensitizers on Photovoltaic Performance of Type II Dye-Sensitized Solar Cells. Ooyama Y; Kanda M; Uenaka K; Ohshita J Chemphyschem; 2015 Oct; 16(14):3049-57. PubMed ID: 26296714 [TBL] [Abstract][Full Text] [Related]