These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23765594)

  • 21. Bioinspired fully physically cross-linked double network hydrogels with a robust, tough and self-healing structure.
    Sabzi M; Samadi N; Abbasi F; Mahdavinia GR; Babaahmadi M
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():374-381. PubMed ID: 28254307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uniform zwitterionic polymer hydrogels with a nonfouling and functionalizable crosslinker using photopolymerization.
    Carr LR; Zhou Y; Krause JE; Xue H; Jiang S
    Biomaterials; 2011 Oct; 32(29):6893-9. PubMed ID: 21704366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double network hydrogel for tissue engineering.
    Gu Z; Huang K; Luo Y; Zhang L; Kuang T; Chen Z; Liao G
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Nov; 10(6):e1520. PubMed ID: 29664220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pullulan dialdehyde crosslinked gelatin hydrogels with high strength for biomedical applications.
    Zhang L; Liu J; Zheng X; Zhang A; Zhang X; Tang K
    Carbohydr Polym; 2019 Jul; 216():45-53. PubMed ID: 31047081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels.
    Huang W; Wang Y; McMullen LM; McDermott MT; Deng H; Du Y; Chen L; Zhang L
    Carbohydr Polym; 2019 Oct; 222():114977. PubMed ID: 31320104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid polysaccharide-silica nanocomposites prepared by the sol-gel technique.
    Shchipunov YA; Karpenko TY
    Langmuir; 2004 May; 20(10):3882-7. PubMed ID: 15969374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanically strong and pH-responsive carboxymethyl chitosan/graphene oxide/polyacrylamide nanocomposite hydrogels with fast recoverability.
    Chen Y; Wang H; Yu J; Wang Y; Zhu J; Hu Z
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1899-1917. PubMed ID: 28726563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and mineralization of a biocompatible double network hydrogel.
    Yang Q; Song F; Zou X; Liao L
    J Biomater Sci Polym Ed; 2017 Apr; 28(5):431-443. PubMed ID: 28056727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent progress in chitosan bio-based soft nanomaterials.
    El Kadib A; Bousmina M; Brunel D
    J Nanosci Nanotechnol; 2014 Jan; 14(1):308-31. PubMed ID: 24730265
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust, tough and anti-fatigue cationic latex composite hydrogels based on dual physically cross-linked networks.
    Gu S; Duan L; Ren X; Gao GH
    J Colloid Interface Sci; 2017 Apr; 492():119-126. PubMed ID: 28081456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-pot synthesis of silane-modified hyaluronic acid hydrogels for effective antibacterial drug delivery via sol-gel stabilization.
    Lee HY; Kim HE; Jeong SH
    Colloids Surf B Biointerfaces; 2019 Feb; 174():308-315. PubMed ID: 30472616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual Physically Cross-Linked κ-Carrageenan-Based Double Network Hydrogels with Superior Self-Healing Performance for Biomedical Application.
    Deng Y; Huang M; Sun D; Hou Y; Li Y; Dong T; Wang X; Zhang L; Yang W
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37544-37554. PubMed ID: 30296052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering a semi-interpenetrating constructed xylan-based hydrogel with superior compressive strength, resilience, and creep recovery abilities.
    Han T; Song T; Pranovich A; Rojas OJ
    Carbohydr Polym; 2022 Oct; 294():119772. PubMed ID: 35868790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.
    Guo B; Finne-Wistrand A; Albertsson AC
    Biomacromolecules; 2011 Jul; 12(7):2601-9. PubMed ID: 21574634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tailoring the dependency between rigidity and water uptake of a microfabricated hydrogel with the conformational rigidity of a polymer cross-linker.
    Schmidt JJ; Jeong JH; Chan V; Cha C; Baek K; Lai MH; Bashir R; Kong H
    Biomacromolecules; 2013 May; 14(5):1361-9. PubMed ID: 23517437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid pectin-Fe
    Niu R; Qin Z; Ji F; Xu M; Tian X; Li J; Yao F
    Soft Matter; 2017 Dec; 13(48):9237-9245. PubMed ID: 29199306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double Network Hydrogels that Mimic the Modulus, Strength, and Lubricity of Cartilage.
    Means AK; Shrode CS; Whitney LV; Ehrhardt DA; Grunlan MA
    Biomacromolecules; 2019 May; 20(5):2034-2042. PubMed ID: 31009565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical Properties of Double Network Poly (Acrylic Acid) Based Hydrogels for Potential Use as a Biomaterial
    Udayanandana R; Silva P; Mudiyanselage TK
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1101-1104. PubMed ID: 31946086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyelectrolyte and Antipolyelectrolyte Effects for Dual Salt-Responsive Interpenetrating Network Hydrogels.
    Huang KT; Ishihara K; Huang CJ
    Biomacromolecules; 2019 Sep; 20(9):3524-3534. PubMed ID: 31381318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing Double-Network Hydrogel for Biomedical Soft Robots.
    Banerjee H; Ren H
    Soft Robot; 2017 Sep; 4(3):191-201. PubMed ID: 29182087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.