These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 2376565)
21. Energy-dependent, high-affinity transport of nickel by the acetogen Clostridium thermoaceticum. Lundie LL; Yang HC; Heinonen JK; Dean SI; Drake HL J Bacteriol; 1988 Dec; 170(12):5705-8. PubMed ID: 3192512 [TBL] [Abstract][Full Text] [Related]
22. Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions. Seravalli J; Kumar M; Lu WP; Ragsdale SW Biochemistry; 1995 Jun; 34(24):7879-88. PubMed ID: 7794899 [TBL] [Abstract][Full Text] [Related]
23. Oxalate- and Glyoxylate-Dependent Growth and Acetogenesis by Clostridium thermoaceticum. Daniel SL; Drake HL Appl Environ Microbiol; 1993 Sep; 59(9):3062-9. PubMed ID: 16349048 [TBL] [Abstract][Full Text] [Related]
24. Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway. Schoelmerich MC; Müller V Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6329-6334. PubMed ID: 30850546 [TBL] [Abstract][Full Text] [Related]
25. Mass-spectrometric studies of the interrelations among hydrogenase, carbon monoxide dehydrogenase, and methane-forming activities in pure and mixed cultures of Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Methanosarcina barkeri. Rajagopal BS; Lespinat PA; Fauque G; LeGall J; Berlier YM Appl Environ Microbiol; 1989 Sep; 55(9):2123-9. PubMed ID: 2508553 [TBL] [Abstract][Full Text] [Related]
26. Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum. Kellum R; Drake HL J Bacteriol; 1984 Oct; 160(1):466-9. PubMed ID: 6434525 [TBL] [Abstract][Full Text] [Related]
27. Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum. Lynd LH; Zeikus JG J Bacteriol; 1983 Mar; 153(3):1415-23. PubMed ID: 6402496 [TBL] [Abstract][Full Text] [Related]
28. Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis. Menon S; Ragsdale SW Biochemistry; 1996 Sep; 35(37):12119-25. PubMed ID: 8810918 [TBL] [Abstract][Full Text] [Related]
29. Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions. Hsu T; Daniel SL; Lux MF; Drake HL J Bacteriol; 1990 Jan; 172(1):212-7. PubMed ID: 2104603 [TBL] [Abstract][Full Text] [Related]
30. Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Sharak Genthner BR; Bryant MP Appl Environ Microbiol; 1987 Mar; 53(3):471-6. PubMed ID: 3579266 [TBL] [Abstract][Full Text] [Related]
31. Role of carbon monoxide dehydrogenase in acetate synthesis by the acetogenic bacterium, Acetobacterium woodii. Shanmugasundaram T; Ragsdale SW; Wood HG Biofactors; 1988 Jul; 1(2):147-52. PubMed ID: 2855585 [TBL] [Abstract][Full Text] [Related]
32. A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. Hess V; Poehlein A; Weghoff MC; Daniel R; Müller V BMC Genomics; 2014 Dec; 15(1):1139. PubMed ID: 25523312 [TBL] [Abstract][Full Text] [Related]
33. Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum. Clark JE; Ragsdale SW; Ljungdahl LG; Wiegel J J Bacteriol; 1982 Jul; 151(1):507-9. PubMed ID: 6806250 [TBL] [Abstract][Full Text] [Related]
34. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. Ragsdale SW; Clark JE; Ljungdahl LG; Lundie LL; Drake HL J Biol Chem; 1983 Feb; 258(4):2364-9. PubMed ID: 6687389 [TBL] [Abstract][Full Text] [Related]
35. Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum. Ragsdale SW; Wood HG; Antholine WE Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6811-4. PubMed ID: 2995986 [TBL] [Abstract][Full Text] [Related]
37. Acetyl-coenzyme A synthesis from methyltetrahydrofolate, CO, and coenzyme A by enzymes purified from Clostridium thermoaceticum: attainment of in vivo rates and identification of rate-limiting steps. Roberts JR; Lu WP; Ragsdale SW J Bacteriol; 1992 Jul; 174(14):4667-76. PubMed ID: 1624454 [TBL] [Abstract][Full Text] [Related]
38. Redox titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum. Shin W; Stafford PR; Lindahl PA Biochemistry; 1992 Jul; 31(26):6003-11. PubMed ID: 1320927 [TBL] [Abstract][Full Text] [Related]
39. Insight into Energy Conservation via Alternative Carbon Monoxide Metabolism in Carboxydothermus pertinax Revealed by Comparative Genome Analysis. Fukuyama Y; Omae K; Yoneda Y; Yoshida T; Sako Y Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728389 [No Abstract] [Full Text] [Related]
40. Kinetic characterization of the carbon monoxide-acetyl-CoA (carbonyl group) exchange activity of the acetyl-CoA synthesizing CO dehydrogenase from Clostridium thermoaceticum. Raybuck SA; Bastian NR; Orme-Johnson WH; Walsh CT Biochemistry; 1988 Oct; 27(20):7698-702. PubMed ID: 2905170 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]