These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 2376571)

  • 1. A cyanide-aldehyde complex inhibits bacterial luciferase.
    Makemson JC
    J Bacteriol; 1990 Aug; 172(8):4725-7. PubMed ID: 2376571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luciferase-dependent oxygen consumption by bioluminescent vibrios.
    Makemson JC
    J Bacteriol; 1986 Feb; 165(2):461-6. PubMed ID: 3944057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between aldehyde derivatives and the aldehyde binding site of bacterial luciferase.
    Jockers R; Ziegler T; Schmid RD
    J Biolumin Chemilumin; 1995; 10(1):21-7. PubMed ID: 7762412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding.
    Lei B; Cho KW; Tu SC
    J Biol Chem; 1994 Feb; 269(8):5612-8. PubMed ID: 8119897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bovine serum albumin interacts with bacterial luciferase.
    Makemson JC; Hastings JW
    J Biolumin Chemilumin; 1991; 6(2):131-6. PubMed ID: 1882706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of bacterial luciferase with aldehyde substrates and inhibitors.
    Francisco WA; Abu-Soud HM; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Nov; 268(33):24734-41. PubMed ID: 8227032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the aldehyde binding site of bacterial luciferase by photoaffinity labeling.
    Tu SC; Henkin J
    Biochemistry; 1983 Jan; 22(2):519-23. PubMed ID: 6824641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting the cellular expression of bacterial luciferase.
    Ulitzur S; Reinhertz A; Hastings JW
    Arch Microbiol; 1981 Mar; 129(1):67-71. PubMed ID: 6971634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioluminescence decay kinetics in the reaction of bacterial luciferase with different aldehydes.
    Ismailov AD; Sobolev AYu ; Danilov VS
    J Biolumin Chemilumin; 1990; 5(3):213-7. PubMed ID: 2220421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affinity labeling of the aldehyde site of bacterial luciferase.
    Fried A; Tu SC
    J Biol Chem; 1984 Sep; 259(17):10754-9. PubMed ID: 6547953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of bacterial bioluminescence in water-organic media.
    Sukovataya IE; Tyulkova NA
    Luminescence; 2001; 16(4):271-3. PubMed ID: 11512142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the functionalities of alphaGlu328 and alphaAla74 of Vibrio harveyi luciferase by site-directed mutagenesis and chemical rescue.
    Li CH; Tu SC
    Biochemistry; 2005 Oct; 44(42):13866-73. PubMed ID: 16229475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of general anesthetics on the bacterial luciferase enzyme from Vibrio harveyi: an anesthetic target site with differential sensitivity.
    Curry S; Lieb WR; Franks NP
    Biochemistry; 1990 May; 29(19):4641-52. PubMed ID: 2372547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of 2,2-diphenylpropylamine at the aldehyde site of bacterial luciferase increases the affinity of the reduced riboflavin 5'-phosphate site.
    Holzman TF; Baldwin TO
    Biochemistry; 1981 Sep; 20(19):5524-8. PubMed ID: 7295690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation of enzyme activities involved in aldehyde metabolism in the luminescent bacterium Vibrio harveyi.
    Byers DM; Bognar A; Meighen EA
    J Bacteriol; 1988 Feb; 170(2):967-71. PubMed ID: 2828339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity coupling and complex formation between bacterial luciferase and flavin reductases.
    Tu SC
    Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of α,β-unsaturated aldehydes as potential substrates for bacterial luciferases.
    Brodl E; Ivkovic J; Tabib CR; Breinbauer R; Macheroux P
    Bioorg Med Chem; 2017 Feb; 25(4):1487-1495. PubMed ID: 28126438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of luciferase from the Luminous marine bacterium Beneckea harveyi by proteases: evidence for a protease labile region and properties of the protein following inactivation.
    Holzman TF; Riley PL; Baldwin TO
    Arch Biochem Biophys; 1980 Dec; 205(2):554-63. PubMed ID: 6970544
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase.
    Lei B; Tu SC
    Biochemistry; 1998 Oct; 37(41):14623-9. PubMed ID: 9772191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence.
    Ulitzur S; Hastings JW
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):265-7. PubMed ID: 311472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.