These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2376576)

  • 1. A cystic fibrosis phenotype in cells cultured from sweat gland secretory coil. Altered kinetics of 36Cl efflux.
    Wood LC; Neufeld EF
    J Biol Chem; 1990 Aug; 265(22):12796-800. PubMed ID: 2376576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cl- permeability of human sweat duct cells monitored with fluorescence-digital imaging microscopy: evidence for reduced plasma membrane Cl- permeability in cystic fibrosis.
    Ram SJ; Kirk KL
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):10166-70. PubMed ID: 2602364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered chloride metabolism in cultured cystic fibrosis skin fibroblasts.
    Mattes PM; Maloney PC; Littlefield JW
    Proc Natl Acad Sci U S A; 1987 May; 84(9):3009-13. PubMed ID: 3472247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro.
    Sato K; Sato F
    J Clin Invest; 1984 Jun; 73(6):1763-71. PubMed ID: 6327771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversed anion selectivity in cultured cystic fibrosis sweat duct cells.
    Bell CL; Reddy MM; Quinton PM
    Am J Physiol; 1992 Jan; 262(1 Pt 1):C32-8. PubMed ID: 1310214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iontophoretic beta-adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo.
    Shamsuddin AK; Reddy MM; Quinton PM
    Exp Physiol; 2008 Aug; 93(8):969-81. PubMed ID: 18441335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of Ca and cAMP on C1 channel activity in cystic fibrosis sweat clear cells as studied by microsuperfusion and cell volume analysis.
    Sato K; Ohtsuyama M; Suzuki Y; Samman G; Sato KT; Sato F
    Adv Exp Med Biol; 1991; 290():145-58. PubMed ID: 1719755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride ion transport in transformed normal and cystic fibrosis epithelial cells.
    Cozens AL; Yezzi MJ; Chin L; Simon EM; Friend DS; Gruenert DC
    Adv Exp Med Biol; 1991; 290():187-94; discussion 194-6. PubMed ID: 1950742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sweat gland bioelectrics differ in cystic fibrosis: a new concept for potential diagnosis and assessment of CFTR function in cystic fibrosis.
    Gonska T; Ip W; Turner D; Han WS; Rose J; Durie P; Quinton P
    Thorax; 2009 Nov; 64(11):932-8. PubMed ID: 19734129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cystic fibrosis affects specific cell type in sweat gland secretory coil.
    Reddy MM; Bell CL; Quinton PM
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C426-33. PubMed ID: 9277340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Cl- permeability in normal and cystic fibrosis sweat duct cells.
    Ram SJ; Weaver ML; Kirk KL
    Am J Physiol; 1990 Nov; 259(5 Pt 1):C842-6. PubMed ID: 2240198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified cyclic adenosine monophosphate-mediated sweat rate test for quantitative measure of cystic fibrosis transmembrane regulator (CFTR) function.
    Callen A; Diener-West M; Zeitlin PL; Rubenstein RC
    J Pediatr; 2000 Dec; 137(6):849-55. PubMed ID: 11113843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunolocalization of band 3 protein in normal and cystic fibrosis skin.
    Hazen-Martin DJ; Pasternack G; Spicer SS; Sens DA
    J Histochem Cytochem; 1986 Jun; 34(6):823-6. PubMed ID: 3517151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of human sweat duct chloride conductance by chloride channel blockers.
    Bijman J; Englert HC; Lang HJ; Greger R; Frömter E
    Pflugers Arch; 1987 May; 408(5):511-4. PubMed ID: 2439981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of chloride transport in cultured normal and cystic fibrosis keratinocytes.
    Kansen M; Keulemans J; Hoogeveen AT; Scholte B; Vaandrager AB; van der Kamp AW; Sinaasappel M; Bot AG; de Jonge HR; Bijman J
    Biochim Biophys Acta; 1992 Jun; 1139(1-2):49-56. PubMed ID: 1377032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of immortal cystic fibrosis tracheobronchial gland epithelial cells.
    Cozens AL; Yezzi MJ; Chin L; Simon EM; Finkbeiner WE; Wagner JA; Gruenert DC
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):5171-5. PubMed ID: 1375758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of membrane chloride currents in rat bile duct epithelial cells.
    Fitz JG; Basavappa S; McGill J; Melhus O; Cohn JA
    J Clin Invest; 1993 Jan; 91(1):319-28. PubMed ID: 7678606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of cultured epithelial cells from the sweat gland in studies of the CF defect.
    Riordan J; Burns J; Tsui LC; Reddy MM; Quinton P; Buchwald M
    Prog Clin Biol Res; 1987; 254():59-71. PubMed ID: 2448827
    [No Abstract]   [Full Text] [Related]  

  • 19. The cholinergic regulation of potassium (86Rb+) permeability in sweat glands isolated from patients with cystic fibrosis.
    Wilson SM; Pediani JD; Cockburn F; Bovell DL; Jenkinson DM; Paton JY; Coutts J; Davidson R; Lambert J; Morris G
    Exp Physiol; 1991 Jul; 76(4):573-8. PubMed ID: 1910765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine selectively activates chloride efflux from human epithelial and mouse fibroblast cell lines expressing the cystic fibrosis transmembrane regulator delta F508 mutation.
    Guay-Broder C; Jacobson KA; Barnoy S; Cabantchik ZI; Guggino WB; Zeitlin PL; Turner RJ; Vergara L; Eidelman O; Pollard HB
    Biochemistry; 1995 Jul; 34(28):9079-87. PubMed ID: 7542476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.