These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 23765855)

  • 21. A phylogenomic study of the OCTase genes in Pseudomonas syringae pathovars: the horizontal transfer of the argK-tox cluster and the evolutionary history of OCTase genes on their genomes.
    Sawada H; Kanaya S; Tsuda M; Suzuki F; Azegami K; Saitou N
    J Mol Evol; 2002 Apr; 54(4):437-57. PubMed ID: 11956683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins.
    Garcia-Herrero A; Peacock RS; Howard SP; Vogel HJ
    Mol Microbiol; 2007 Nov; 66(4):872-89. PubMed ID: 17927700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The binding mechanism of pyoverdin with the outer membrane receptor FpvA in Pseudomonas aeruginosa is dependent on its iron-loaded status.
    Clément E; Mesini PJ; Pattus F; Schalk IJ
    Biochemistry; 2004 Jun; 43(24):7954-65. PubMed ID: 15196040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus.
    Neugebauer H; Herrmann C; Kammer W; Schwarz G; Nordheim A; Braun V
    J Bacteriol; 2005 Dec; 187(24):8300-11. PubMed ID: 16321934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of FoxA, FiuA, and FpvB in iron acquisition via hydroxamate-type siderophores in Pseudomonas aeruginosa.
    Will V; Frey C; Normant V; Kuhn L; Chicher J; Volck F; Schalk IJ
    Sci Rep; 2024 Aug; 14(1):18795. PubMed ID: 39138320
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Godoy M; Coca Y; Suárez R; Montes de Oca M; Bledsoe JW; Burbulis I; Caro D; Pontigo JP; Maracaja-Coutinho V; Arias-Carrasco R; Rodríguez-Córdova L; Sáez-Navarrete C
    Animals (Basel); 2023 Dec; 14(1):. PubMed ID: 38200828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudomonas virulence factor controls expression of virulence genes in Pseudomonas entomophila.
    Acken KA; Li B
    PLoS One; 2023; 18(5):e0284907. PubMed ID: 37200397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two new siderophores produced by
    Grosse C; Brandt N; Van Antwerpen P; Wintjens R; Matthijs S
    Front Microbiol; 2023; 14():1143861. PubMed ID: 37032897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Illuminating Siderophore Transporter Functionality with Thiopeptide Antibiotics.
    Dolan SK
    mBio; 2023 Apr; 14(2):e0332622. PubMed ID: 36946760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of iron homeostasis in Pseudomonas aeruginosa and emerging therapeutics directed to disrupt this vital process.
    Sánchez-Jiménez A; Marcos-Torres FJ; Llamas MA
    Microb Biotechnol; 2023 Jul; 16(7):1475-1491. PubMed ID: 36857468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution.
    Kümmerli R
    Biometals; 2023 Aug; 36(4):777-797. PubMed ID: 36508064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell Envelope Stress Response in Pseudomonas aeruginosa.
    Chevalier S; Bouffartigues E; Tortuel D; David A; Tahrioui A; Labbé C; Barreau M; Tareau AS; Louis M; Lesouhaitier O; Cornelis P
    Adv Exp Med Biol; 2022; 1386():147-184. PubMed ID: 36258072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron Homeostasis in Pseudomonas aeruginosa: Targeting Iron Acquisition and Storage as an Antimicrobial Strategy.
    Llamas MA; Sánchez-Jiménez A
    Adv Exp Med Biol; 2022; 1386():29-68. PubMed ID: 36258068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbe Related Chemical Signalling and Its Application in Agriculture.
    Abdul Hamid NW; Nadarajah K
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inter-Kingdom Signaling of Stress Hormones: Sensing, Transport and Modulation of Bacterial Physiology.
    Boukerb AM; Cambronel M; Rodrigues S; Mesguida O; Knowlton R; Feuilloley MGJ; Zommiti M; Connil N
    Front Microbiol; 2021; 12():690942. PubMed ID: 34690943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics.
    Klebba PE; Newton SMC; Six DA; Kumar A; Yang T; Nairn BL; Munger C; Chakravorty S
    Chem Rev; 2021 May; 121(9):5193-5239. PubMed ID: 33724814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic factors involved in rhizosphere colonization by phytobeneficial
    Zboralski A; Filion M
    Comput Struct Biotechnol J; 2020; 18():3539-3554. PubMed ID: 33304453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenotypic Adaption of
    Perraud Q; Cantero P; Roche B; Gasser V; Normant VP; Kuhn L; Hammann P; Mislin GLA; Ehret-Sabatier L; Schalk IJ
    Mol Cell Proteomics; 2020 Apr; 19(4):589-607. PubMed ID: 32024770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structure of the bacterial iron-catecholate transporter Fiu suggests that it imports substrates via a two-step mechanism.
    Grinter R; Lithgow T
    J Biol Chem; 2019 Dec; 294(51):19523-19534. PubMed ID: 31712312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anthropogenic remediation of heavy metals selects against natural microbial remediation.
    Hesse E; Padfield D; Bayer F; van Veen EM; Bryan CG; Buckling A
    Proc Biol Sci; 2019 Jun; 286(1905):20190804. PubMed ID: 31213187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.