These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23766672)

  • 1. Water-protein interactions: the secret of protein dynamics.
    Martini S; Bonechi C; Foletti A; Rossi C
    ScientificWorldJournal; 2013; 2013():138916. PubMed ID: 23766672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the solvent in the dynamical transitions of proteins: the case of the lysozyme-water system.
    Mallamace F; Chen SH; Broccio M; Corsaro C; Crupi V; Majolino D; Venuti V; Baglioni P; Fratini E; Vannucci C; Stanley HE
    J Chem Phys; 2007 Jul; 127(4):045104. PubMed ID: 17672727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water molecule contributions to proton spin-lattice relaxation in rotationally immobilized proteins.
    Goddard YA; Korb JP; Bryant RG
    J Magn Reson; 2009 Jul; 199(1):68-74. PubMed ID: 19394883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing molecular interactions.
    Petsko GA
    Curr Protoc Bioinformatics; 2003 May; Chapter 8():Unit8.1. PubMed ID: 18428708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator.
    Bonvin AM; Sunnerhagen M; Otting G; van Gunsteren WF
    J Mol Biol; 1998 Oct; 282(4):859-73. PubMed ID: 9743632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classes of hydration sites at protein-water interfaces: the source of contrast in magnetic resonance imaging.
    Koenig SH
    Biophys J; 1995 Aug; 69(2):593-603. PubMed ID: 8527674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water around thermophilic proteins: the role of charged and apolar atoms.
    Sterpone F; Bertonati C; Briganti G; Melchionna S
    J Phys Condens Matter; 2010 Jul; 22(28):284113. PubMed ID: 21399285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordering effect of protein surfaces on water dynamics: NMR relaxation study.
    Bonechi C; Tamasi G; Pardini A; Donati A; Volpi V; Leone G; Consumi M; Magnani A; Rossi C
    Biophys Chem; 2019 Jun; 249():106149. PubMed ID: 30981137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein hydration dynamics in solution: a critical survey.
    Halle B
    Philos Trans R Soc Lond B Biol Sci; 2004 Aug; 359(1448):1207-23; discussion 1223-4, 1323-8. PubMed ID: 15306377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation.
    Koenig SH; Hallenga K; Shporer M
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2667-71. PubMed ID: 1058481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation.
    Fogarty AC; Laage D
    J Phys Chem B; 2014 Jul; 118(28):7715-29. PubMed ID: 24479585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvated docking: introducing water into the modelling of biomolecular complexes.
    van Dijk AD; Bonvin AM
    Bioinformatics; 2006 Oct; 22(19):2340-7. PubMed ID: 16899489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme-values statistics and dynamics of water at protein interfaces.
    Korb JP; Goddard Y; Pajski J; Diakova G; Bryant RG
    J Phys Chem B; 2011 Nov; 115(44):12845-58. PubMed ID: 21932852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic regions on protein surfaces: definition based on hydration shell structure and a quick method for their computation.
    Eisenhaber F; Argos P
    Protein Eng; 1996 Dec; 9(12):1121-33. PubMed ID: 9010925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration structure of human lysozyme investigated by molecular dynamics simulation and cryogenic X-ray crystal structure analyses: on the correlation between crystal water sites, solvent density, and solvent dipole.
    Higo J; Nakasako M
    J Comput Chem; 2002 Nov; 23(14):1323-36. PubMed ID: 12214315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical deductions from nuclear magnetic resonance relaxation measurements at the water-protein interface.
    Bryant RG; Shirley WM
    Biophys J; 1980 Oct; 32(1):3-16. PubMed ID: 7248450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revival of the Intermolecular Nuclear Overhauser Effect for Mapping Local Protein Hydration Dynamics.
    Braun D; Schmollngruber M; Steinhauser O
    J Phys Chem Lett; 2017 Jul; 8(14):3421-3426. PubMed ID: 28686451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depolarized light scattering and dielectric response of a peptide dissolved in water.
    Martin DR; Fioretto D; Matyushov DV
    J Chem Phys; 2014 Jan; 140(3):035101. PubMed ID: 25669413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR and molecular dynamics studies of the hydration of a zinc finger-DNA complex.
    Tsui V; Radhakrishnan I; Wright PE; Case DA
    J Mol Biol; 2000 Oct; 302(5):1101-17. PubMed ID: 11183777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theory of protein dynamics to predict NMR relaxation.
    Caballero-Manrique E; Bray JK; Deutschman WA; Dahlquist FW; Guenza MG
    Biophys J; 2007 Dec; 93(12):4128-40. PubMed ID: 17766356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.