These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2376672)

  • 21. Cell killing, chromosomal aberrations, and division delay as thermal sensitivity is modified during the cell cycle.
    Dewey WC; Li XL; Wong RS
    Radiat Res; 1990 Jun; 122(3):268-74. PubMed ID: 2356280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effect of the protein synthesis inhibitors puromycin and cycloheximide on vascular smooth muscle cell viability.
    Croons V; Martinet W; Herman AG; De Meyer GR
    J Pharmacol Exp Ther; 2008 Jun; 325(3):824-32. PubMed ID: 18322149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of diamide toxicity in thermotolerant cells by inhibition of protein synthesis.
    Freeman ML; Meredith MJ
    Cancer Res; 1989 Aug; 49(16):4493-8. PubMed ID: 2743338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress dose-dependent suppression of heat shock protein gene expression by inhibiting protein synthesis during heat shock treatment.
    Mizuno S; Ishii A; Murakami Y; Akagawa H
    Cell Struct Funct; 1997 Feb; 22(1):7-13. PubMed ID: 9113384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protection against heat-induced cell killing by alanine.
    Henle KJ; Cunningham MA; Nagle WA; Moss AJ
    Int J Hyperthermia; 1988; 4(3):323-31. PubMed ID: 3290349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of hyperthermia (45 degrees C) on calcium flux in Chinese hamster ovary HA-1 fibroblasts and its potential role in cytotoxicity and heat resistance.
    Stevenson MA; Calderwood SK; Hahn GM
    Cancer Res; 1987 Jul; 47(14):3712-7. PubMed ID: 3109731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal adaptation in CHO cells at 40 degrees C: the influence of growth conditions and the role of heat shock proteins.
    Przybytkowski E; Bates JH; Bates DA; Mackillop WJ
    Radiat Res; 1986 Sep; 107(3):317-31. PubMed ID: 3749466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of heat shock protein synthesis and protein glycosylation by stepdown heating.
    Henle KJ; Nagle WA
    Exp Cell Res; 1991 Oct; 196(2):184-91. PubMed ID: 1909966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of heat shock on neuronal cultures: importance of protein synthesis and HSP72 induction for induced tolerance and survival.
    Vogel P; Dux E; Wiessner C
    Metab Brain Dis; 1997 Sep; 12(3):203-17. PubMed ID: 9346469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Goodwin model: simulating the effect of cycloheximide and heat shock on the sporulation rhythm of Neurospora crassa.
    Ruoff P; Vinsjevik M; Mohsenzadeh S; Rensing L
    J Theor Biol; 1999 Feb; 196(4):483-94. PubMed ID: 10036201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance.
    Holahan EV; Highfield DP; Holahan PK; Dewey WC
    Radiat Res; 1984 Jan; 97(1):108-31. PubMed ID: 6695037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Faster protein degradation in response to decreases steady state levels of amino acylation of tRNAHis in Chinese hamster ovary cells.
    Scornik OA
    J Biol Chem; 1983 Jan; 258(2):882-6. PubMed ID: 6549756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ubiquitin-activating enzyme, E1, is required for stress-induced lysosomal degradation of cellular proteins.
    Gropper R; Brandt RA; Elias S; Bearer CF; Mayer A; Schwartz AL; Ciechanover A
    J Biol Chem; 1991 Feb; 266(6):3602-10. PubMed ID: 1847380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of protein synthesis blocks the response to 25-hydroxycholesterol by inhibiting degradation of hydroxymethylglutaryl-CoA reductase.
    Chen HW; Richards BA; Kandutsch AA
    Biochim Biophys Acta; 1982 Sep; 712(3):484-9. PubMed ID: 7126620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protection against heat-induced cell killing by polyols in vitro.
    Henle KJ; Peck JW; Higashikubo R
    Cancer Res; 1983 Apr; 43(4):1624-7. PubMed ID: 6831408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism(s) of heat killing: accumulation of nascent polypeptides in the nucleus?
    Lee YJ; Borrelli MJ; Corry PM
    Biochem Biophys Res Commun; 1991 May; 176(3):1525-31. PubMed ID: 2039528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein synthesis blockade differentially affects the degradation of constitutive and nicotinic receptor-induced tyrosine hydroxylase protein level in isolated bovine chromaffin cells.
    Fernández E; Craviso GL
    J Neurochem; 1999 Jul; 73(1):169-78. PubMed ID: 10386968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance.
    Rikhvanov EG; Fedoseeva IV; Varakina NN; Rusaleva TM; Fedyaeva AV
    Biochemistry (Mosc); 2014 Jan; 79(1):16-24. PubMed ID: 24512659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen peroxide or heat shock induces resistance to hydrogen peroxide in Chinese hamster fibroblasts.
    Spitz DR; Dewey WC; Li GC
    J Cell Physiol; 1987 Jun; 131(3):364-73. PubMed ID: 3597544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suppression of thermotolerance development through cycloheximide-induced negative control of stress protein gene expression.
    Akagawa H; Ishii A; Mizuno S
    J Biochem; 1998 Feb; 123(2):226-32. PubMed ID: 9538196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.