These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 2376678)

  • 21. Measurements of effective thermal conductivity during hyperthermia: a comparison of experimental and clinical results.
    Delannoy J; Giaux G; Dittmar A; Newman WH; Delhomme G; Delvalee D
    Int J Hyperthermia; 1990; 6(1):143-54. PubMed ID: 2299227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer.
    Kaur K; Kaur A
    Electromagn Biol Med; 2023 Oct; 42(4):163-181. PubMed ID: 38156657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microwave hyperthermia controlled by microwave radiometry: technical aspects and first clinical results.
    Chivé M; Plancot M; Giaux G; Prevost B
    J Microw Power; 1984 Dec; 19(4):233-41. PubMed ID: 6570132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 434-MHz microwave hyperthermia applicators: experimental results in phantom and preliminary clinical results.
    Gaboriaud G; Jaulerry C; Bataini JP; Michel D; Dardalhon M; Averbeck D
    Prog Clin Biol Res; 1982; 107():611-20. PubMed ID: 6762548
    [No Abstract]   [Full Text] [Related]  

  • 25. Clinical research into hyperthermia treatment of cancer using a 430 MHz microwave heating system with a lens applicator.
    Matsuda T; Kikuchi M; Tanaka Y; Hiraoka M; Nishimura Y; Akuta K; Takahashi M; Abe M; Fuwa N; Morita K
    Int J Hyperthermia; 1991; 7(3):425-40. PubMed ID: 1919139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2450 MHz oesophagus applicator with multi-temperature sensors and its temperature-control equipment.
    Zhang LR; Wei JG; Cheng ZF; Wang GZ; Liu LY; Li WL
    Int J Hyperthermia; 1990; 6(4):745-53. PubMed ID: 2203849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of microwave hyperthermia applicators.
    Chou CK
    Bioelectromagnetics; 1992; 13(6):581-97. PubMed ID: 1482420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical evaluation of 430 MHz microwave hyperthermia system with lens applicator for cancer therapy.
    Hiraoka M; Nishimura Y; Masunaga S; Koishi M; Mitsumori M; Li YP; Nagata Y; Akuta K; Takahashi M; Abe M
    Med Biol Eng Comput; 1995 Jan; 33(1):44-7. PubMed ID: 7616780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrical characteristics of waveguide applicators for medical applications.
    Audet J; Bolomey JC; Pichot C; N'Guyen DD; Robillard M; Chive M; Leroy Y
    J Microw Power; 1980 Sep; 15(3):177-86. PubMed ID: 6912321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.
    Gelvich EA; Mazokhin VN
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental assessment of phased-array heating of neck tumours.
    Gross EJ; Cetas TC; Stauffer PR; Liu RL; Lumori ML
    Int J Hyperthermia; 1990; 6(2):453-74. PubMed ID: 2324581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermographically determined specific absorption rate patterns of 434-MHz applicators.
    Chou CK; Guy AW; McDougall JA; Dong A; Luk KH
    Med Phys; 1986; 13(3):385-90. PubMed ID: 3724699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A technique for combining microwave hyperthermia with intraluminal brachytherapy of the oesophagus.
    Astrahan MA; Sapozink MD; Luxton G; Kampp TD; Petrovich Z
    Int J Hyperthermia; 1989; 5(1):37-51. PubMed ID: 2921533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heating characteristics of the TRIPAS hyperthermia system for deep seated malignancy.
    Surowiec A; Bicher HI
    J Microw Power Electromagn Energy; 1995; 30(3):135-40. PubMed ID: 7472918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation-based design and characterization of a microwave applicator for MR-guided hyperthermia experimental studies in small animals.
    Faridi P; Bossmann SH; Prakash P
    Biomed Phys Eng Express; 2020 Jan; 6(1):. PubMed ID: 32999735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical evaluation of a microwave/radiofrequency system (BSD Corporation) for induction of local and regional hyperthermia.
    Gibbs FA
    J Microw Power; 1981 Jun; 16(2):185-92. PubMed ID: 6915105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A coaxial antenna with miniaturized choke for minimally invasive interstitial heating.
    Longo I; Gentili GB; Cerretelli M; Tosoratti N
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):82-8. PubMed ID: 12617527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of fat thickness on heating patterns of the microwave applicator MA-151 at 631 and 915 MHz.
    Chou CK; McDougall JA; Chan KW; Luk KH
    Int J Radiat Oncol Biol Phys; 1990 Oct; 19(4):1067-70. PubMed ID: 2211244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.