These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23766814)

  • 1. Appel-reagent-mediated transformation of glycosyl hemiacetal derivatives into thioglycosides and glycosyl thiols.
    Ghosh T; Santra A; Misra AK
    Beilstein J Org Chem; 2013; 9():974-982. PubMed ID: 23766814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of glycosyl chlorides using catalytic Appel conditions.
    Pongener I; Nikitin K; McGarrigle EM
    Org Biomol Chem; 2019 Aug; 17(32):7531-7535. PubMed ID: 31369028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective synthesis of β-glycosyl thiols and their synthetic applications.
    Jana M; Misra AK
    J Org Chem; 2013 Mar; 78(6):2680-6. PubMed ID: 23421958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tri-isopropylsilyl thioglycosides as masked glycosyl thiol nucleophiles for the synthesis of S-linked glycosides and glyco-conjugates.
    Mandal S; Nilsson UJ
    Org Biomol Chem; 2014 Jul; 12(27):4816-9. PubMed ID: 24867410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselective 1,2-cis glycosylation of 2-O-allyl protected thioglycosides.
    Aloui M; Chambers DJ; Cumpstey I; Fairbanks AJ; Redgrave AJ; Seward CM
    Chemistry; 2002 Jun; 8(11):2608-21. PubMed ID: 12180341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent free, catalytic and diastereoselective preparation of aryl and alkyl thioglycosides as key components for oligosaccharide synthesis.
    Jensen DL; Trinderup HH; Skovbo F; Jensen HH
    Org Biomol Chem; 2022 Jun; 20(24):4915-4925. PubMed ID: 35678647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel triple mutant of an extremophilic glycosyl hydrolase enables the rapid synthesis of thioglycosides.
    Pillet L; Lim D; Almulhim N; Benítez-Mateos AI; Paradisi F
    Chem Commun (Camb); 2022 Oct; 58(86):12118-12121. PubMed ID: 36226508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosylation from the non-reducing end using a combination of thioglycoside and glycosyl sulfoxide as the glycosyl donor and the acceptor.
    Kajimoto T; Arimitsu K; Ozeki M; Node M
    Chem Pharm Bull (Tokyo); 2010 May; 58(5):758-64. PubMed ID: 20460812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic studies and methods to prevent aglycon transfer of thioglycosides.
    Li Z; Gildersleeve JC
    J Am Chem Soc; 2006 Sep; 128(35):11612-9. PubMed ID: 16939286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhenium(V)-catalyzed synthesis of 1,1'-2-deoxy thioglycosides.
    Zhao X; Wu B; Shu P; Meng L; Zeng J; Wan Q
    Carbohydr Res; 2021 Oct; 508():108415. PubMed ID: 34358864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of Thioglycosides with Copper(II) Bromide.
    Pooladian F; Escopy S; Demchenko AV
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A convenient preparation of glycosyl chlorides from aryl/alkyl thioglycosides.
    Sugiyama S; Diakur JM
    Org Lett; 2000 Aug; 2(17):2713-5. PubMed ID: 10990435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel synthesis of new pyrazole thioglycosides as pyrazomycin analogues.
    Abu-Zaied MA; Elgemeie GH
    Nucleosides Nucleotides Nucleic Acids; 2019; 38(5):374-389. PubMed ID: 30689496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Streamlined Regenerative Glycosylation Reaction: Direct, Acid-Free Activation of Thioglycosides.
    Escopy S; Singh Y; Stine KJ; Demchenko AV
    Chemistry; 2021 Jan; 27(1):354-361. PubMed ID: 32804435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An easy access to halide ion-catalytic alpha-glycosylation using carbon tetrabromide and triphenylphosphine as multifunctional reagents.
    Shingu Y; Nishida Y; Dohi H; Kobayashi K
    Org Biomol Chem; 2003 Jul; 1(14):2518-21. PubMed ID: 12956070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of α-Thioglycoside Donors: Reactivity Studies toward Configuration-Controlled Orthogonal Activation in One-Pot Systems.
    Smith R; Müller-Bunz H; Zhu X
    Org Lett; 2016 Aug; 18(15):3578-81. PubMed ID: 27399930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ formation of β-glycosyl imidinium triflate from participating thioglycosyl donors: elaboration to disarmed-armed iterative glycosylation.
    Lin YH; Ghosh B; Mong KK
    Chem Commun (Camb); 2012 Nov; 48(88):10910-2. PubMed ID: 23023321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition-metal-free synthesis of aryl 1-thioglycosides with arynes at room temperature.
    Liu Y; Yu XB; Zhang XM; Zhong Q; Liao LH; Yan N
    RSC Adv; 2021 Aug; 11(43):26666-26671. PubMed ID: 35479995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur and Azobenzenes, a Profitable Liaison: Straightforward Synthesis of Photoswitchable Thioglycosides with Tunable Properties.
    Berry J; Lindhorst TK; Despras G
    Chemistry; 2022 Jul; 28(39):e202200354. PubMed ID: 35537915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and use of glycosyl phosphates as glycosyl donors.
    Plante OJ; Andrade RB; Seeberger PH
    Org Lett; 1999 Jul; 1(2):211-4. PubMed ID: 10905866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.