These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23766957)

  • 1. Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi(®) bionanocomposite.
    Nainggolan H; Gea S; Bilotti E; Peijs T; Hutagalung SD
    Beilstein J Nanotechnol; 2013; 4():325-9. PubMed ID: 23766957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filling of Mater-Bi with Nanoclays to Enhance the Biofilm Rigidity.
    Cavallaro G; Lazzara G; Lisuzzo L; Milioto S; Parisi F
    J Funct Biomater; 2018 Oct; 9(4):. PubMed ID: 30347894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites.
    Ilyas RA; Sapuan SM; Ishak MR; Zainudin ES
    Carbohydr Polym; 2018 Dec; 202():186-202. PubMed ID: 30286991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Accelerated Aging on the Fiber-Matrix Adhesion of Regenerated Cellulose Fiber-Reinforced Bio-Polyamide.
    Falkenreck CK; Gemmeke N; Zarges JC; Heim HP
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites.
    Rajisha KR; Maria HJ; Pothan LA; Ahmad Z; Thomas S
    Int J Biol Macromol; 2014 Jun; 67():147-53. PubMed ID: 24657376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bamboo Fiber Based Cellulose Nanocrystals/Poly(Lactic Acid)/Poly(Butylene Succinate) Nanocomposites: Morphological, Mechanical and Thermal Properties.
    Rasheed M; Jawaid M; Parveez B
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33805433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process.
    Gea S; Reynolds CT; Roohpour N; Wirjosentono B; Soykeabkaew N; Bilotti E; Peijs T
    Bioresour Technol; 2011 Oct; 102(19):9105-10. PubMed ID: 21835613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Temperature Fibre Direct Compounding of Cellulose Fibres into PA6.
    Slapnik J; Liu Y; Kupfer R; Lucyshyn T; Nardin B; Pinter G
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties.
    Naidu DS; John MJ
    Int J Biol Macromol; 2021 May; 179():448-456. PubMed ID: 33711367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing Polymer Blends of Mater-Bi
    Bouzidi S; Ben Ayed E; Tarrés Q; Delgado-Aguilar M; Boufi S
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances.
    Shao W; Wang S; Liu H; Wu J; Zhang R; Min H; Huang M
    Carbohydr Polym; 2016 Mar; 138():166-71. PubMed ID: 26794749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcing Linear Low-Density Polyethylene with Surfactant-Treated Microfibrillated Cellulose.
    Wang G; Yang X; Wang W
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process Optimization of Ultra-High Molecular Weight Polyethylene/Cellulose Nanofiber Bionanocomposites in Triple Screw Kneading Extruder by Response Surface Methodology.
    Sharip NS; Ariffin H; Andou Y; Shirosaki Y; Bahrin EK; Jawaid M; Tahir PM; Ibrahim NA
    Molecules; 2020 Sep; 25(19):. PubMed ID: 33008017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Furanoate-Based Nanocomposites: A Case Study Using Poly(Butylene 2,5-Furanoate) and Poly(Butylene 2,5-Furanoate)-
    Matos M; F Sousa A; H C S Silva N; S R Freire C; Andrade M; Mendes A; J D Silvestre A
    Polymers (Basel); 2018 Jul; 10(8):. PubMed ID: 30960735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels.
    Pelissari FM; Andrade-Mahecha MM; Sobral PJDA; Menegalli FC
    J Colloid Interface Sci; 2017 Nov; 505():154-167. PubMed ID: 28577465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilayer bacterial cellulose/resole nanocomposites: Relationship between structural and electro-thermo-mechanical properties.
    Sheykhnazari S; Tabarsa T; Mashkour M; Khazaeian A; Ghanbari A
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2115-2122. PubMed ID: 30218738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Cellulose Nanofibrils on the Properties of Jatropha Oil-Based Waterborne Polyurethane Nanocomposite Film.
    Amri MR; Guan CT; Osman Al-Edrus SS; Md Yasin F; Mohamad SF
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33946517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites.
    Brown EE; Laborie MP
    Biomacromolecules; 2007 Oct; 8(10):3074-81. PubMed ID: 17764151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensile, Thermal, Dielectric and Morphological Properties of Polyoxymethylene/Silica Nanocomposites.
    Mai TT; Chinh NT; Baskaran R; Trang NTT; Thang VV; Le DTT; Minh DQ; Hoang T
    J Nanosci Nanotechnol; 2018 Jul; 18(7):4963-4970. PubMed ID: 29442680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.