These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23767288)

  • 1. Impact of poly(L-lactide) versus poly(L-lactide-co-trimethylene carbonate) on biological characteristics of fibroblasts and osteoblasts.
    Scislowska-Czarnecka A; Pamula E; Kolaczkowska E
    Folia Biol (Krakow); 2013; 61(1-2):11-24. PubMed ID: 23767288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of aliphatic polyesters on activation of the immune system: studies on macrophages.
    Scislowska-Czarnecka A; Pamula E; Tlalka A; Kolaczkowska E
    J Biomater Sci Polym Ed; 2012; 23(6):715-38. PubMed ID: 21375810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biocompatibility evaluation of lactide--trimethylene carbonate copolymers].
    Tu S; Yang J; Chen Y; Luo X; Li S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):595-9. PubMed ID: 20649027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of (poly)-L-lactic acid on the proliferation and differentiation of primary bone cells in vitro.
    Otto TE; Nulend JK; Patka P; Burger EH; Haarman HJ
    J Biomed Mater Res; 1996 Dec; 32(4):513-8. PubMed ID: 8953140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on poly(L-lactide-co-trimethylene carbonate): synthesis and cell compatibility of electrospun film.
    Ji LJ; Lai KL; He B; Wang G; Song LQ; Wu Y; Gu ZW
    Biomed Mater; 2010 Aug; 5(4):045009. PubMed ID: 20644241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of the pro-inflammatory response by tetrandrine-loading poly(L-lactic acid) films in vitro and in vivo.
    Wang QS; Cui YL; Gao LN; Guo Y; Li RX; Zhang XZ
    J Biomed Mater Res A; 2014 Nov; 102(11):4098-107. PubMed ID: 24442958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-osteoblasts on poly(L-lactic acid) and silicon oxide: Influence of fibronectin and albumin adsorption.
    Hindié M; Degat MC; Gaudière F; Gallet O; Van Tassel PR; Pauthe E
    Acta Biomater; 2011 Jan; 7(1):387-94. PubMed ID: 20692384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro biocompatibility evaluation of bioresorbable copolymers prepared from L-lactide, 1, 3-trimethylene carbonate, and glycolide for cardiovascular applications.
    Shen X; Su F; Dong J; Fan Z; Duan Y; Li S
    J Biomater Sci Polym Ed; 2015; 26(8):497-514. PubMed ID: 25783945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications.
    Hickey DJ; Ercan B; Sun L; Webster TJ
    Acta Biomater; 2015 Mar; 14():175-84. PubMed ID: 25523875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of osteoblast-like MC3T3-E1 cell responses by poly(lactide).
    Ikarashi Y; Tsuchiya T; Kaniwa M; Nakamura A
    Biol Pharm Bull; 2000 Dec; 23(12):1470-6. PubMed ID: 11145180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo study on the histocompatibility and degradation behavior of biodegradable poly(trimethylene carbonate-co-D,L-lactide).
    Guo Q; Lu Z; Zhang Y; Li S; Yang J
    Acta Biochim Biophys Sin (Shanghai); 2011 Jun; 43(6):433-40. PubMed ID: 21571741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, morphology and cell affinity of poly(L-lactide) films surface-functionalized with chitosan nanofibers via a solid-liquid phase separation technique.
    Zhao J; Han W; Tang M; Tu M; Zeng R; Liang Z; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1546-53. PubMed ID: 23827607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(trimethylene carbonate) and poly(D,L-lactic acid) modify human dendritic cell responses to staphylococci but do not affect Th1 and Th2 cell development.
    Balraadjsing PP; de Jong EC; Grijpma DW; Tanck MW; Zaat SA
    Eur Cell Mater; 2018 Feb; 35():103-116. PubMed ID: 29457614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells.
    Marques AP; Cruz HR; Coutinho OP; Reis RL
    J Mater Sci Mater Med; 2005 Sep; 16(9):833-42. PubMed ID: 16167112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.
    Nga NK; Hoai TT; Viet PH
    Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen plasma surface modification augments poly(L-lactide-co-glycolide) cytocompatibility toward osteoblasts and minimizes immune activation of macrophages.
    Scislowska-Czarnecka A; Szmigiel D; Genet M; Dupont-Gillain C; Pamula E; Kolaczkowska E
    J Biomed Mater Res A; 2015 Dec; 103(12):3965-77. PubMed ID: 26014580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro.
    Wake MC; Gerecht PD; Lu L; Mikos AG
    Biomaterials; 1998 Jul; 19(14):1255-68. PubMed ID: 9720889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic profiling of osteoblast-like cells cultured on a novel bone reconstructive material, consisting of poly-L-lactide, carbon nanotubes and microhydroxyapatite, in the presence of bone morphogenetic protein-2.
    van der Zande M; Walboomers XF; Brännvall M; Olalde B; Jurado MJ; Alava JI; Jansen JA
    Acta Biomater; 2010 Nov; 6(11):4352-60. PubMed ID: 20601234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallinity assessment and in vitro cytotoxicity of polylactide scaffolds for biomedical applications.
    Sarasua JR; López-Rodríguez N; Zuza E; Petisco S; Castro B; del Olmo M; Palomares T; Alonso-Varona A
    J Mater Sci Mater Med; 2011 Nov; 22(11):2513-23. PubMed ID: 21858721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.