These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23767500)

  • 41. Exact encounter times for many random walkers on regular and complex networks.
    Sanders DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036119. PubMed ID: 19905192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Free volume of an oligomeric epoxy resin and its relation to structural relaxation: evidence from positron lifetime and pressure-volume-temperature experiments.
    Dlubek G; Pointeck J; Shaikh MQ; Hassan EM; Krause-Rehberg R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021802. PubMed ID: 17358359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bohman-Frieze-Wormald model on the lattice, yielding a discontinuous percolation transition.
    Schrenk KJ; Felder A; Deflorin S; Araújo NA; D'Souza RM; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031103. PubMed ID: 22587034
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Record statistics for multiple random walks.
    Wergen G; Majumdar SN; Schehr G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011119. PubMed ID: 23005380
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Random walks with shrinking steps: first-passage characteristics.
    Rador T; Taneri S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036118. PubMed ID: 16605609
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
    Silva P; Matos V; Santos CP
    Biol Cybern; 2014 Feb; 108(1):103-19. PubMed ID: 24469319
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of wormlike robotic locomotion on compliant surfaces.
    Zarrouk D; Sharf I; Shoham M
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):301-9. PubMed ID: 20709635
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Leg recirculation in horizontal plane locomotion.
    Wickramasuriya A; Schmitt J
    Biol Cybern; 2009 Oct; 101(4):247-63. PubMed ID: 19787371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA; Perry J; Gitter AJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Numerical analysis of a unique mode of locomotion: vertical climbing by Pacific lamprey.
    Zhu Q; Moser M; Kemp P
    Bioinspir Biomim; 2011 Mar; 6(1):016005. PubMed ID: 21273687
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Introduction of frictional and turning function for pedestrian outflow with an obstacle.
    Yanagisawa D; Kimura A; Tomoeda A; Nishi R; Suma Y; Ohtsuka K; Nishinari K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036110. PubMed ID: 19905183
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How well can spring-mass-like telescoping leg models fit multi-pedal sagittal-plane locomotion data?
    Srinivasan M; Holmes P
    J Theor Biol; 2008 Nov; 255(1):1-7. PubMed ID: 18671984
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shape characteristics of equilibrium and non-equilibrium fractal clusters.
    Mansfield ML; Douglas JF
    J Chem Phys; 2013 Jul; 139(4):044901. PubMed ID: 23902013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Classical Liquids in Fractal Dimension.
    Heinen M; Schnyder SK; Brady JF; Löwen H
    Phys Rev Lett; 2015 Aug; 115(9):097801. PubMed ID: 26371681
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gait adaptation during obstacle crossing reveals impairments in the visual control of locomotion in Williams syndrome.
    Hocking DR; Rinehart NJ; McGinley JL; Galna B; Moss SA; Bradshaw JL
    Neuroscience; 2011 Dec; 197():320-9. PubMed ID: 21945032
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distribution of first-passage times to specific targets on compactly explored fractal structures.
    Meroz Y; Sokolov IM; Klafter J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):020104. PubMed ID: 21405802
    [TBL] [Abstract][Full Text] [Related]  

  • 57. "Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations".
    Liebovitch LS; Todorov AT
    J Appl Physiol (1985); 1996 May; 80(5):1446-7. PubMed ID: 8727525
    [No Abstract]   [Full Text] [Related]  

  • 58. Generating pathological gait patterns via the use of robotic locomotion models.
    Ephanov A; Hurmuzlu Y
    Technol Health Care; 2002; 10(2):135-46. PubMed ID: 12082217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diffusion-driven spreading phenomena: the structure of the hull of the visited territory.
    Arapaki E; Argyrakis P; Bunde A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031101. PubMed ID: 15089259
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Random walks in nonuniform environments with local dynamic interactions.
    Baker CM; Hughes BD; Landman KA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042113. PubMed ID: 24229122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.