These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 23767632)
1. Efficiency of osmotic pipe flows. Haaning LS; Jensen KH; Hélix-Nielsen C; Berg-Sørensen K; Bohr T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053019. PubMed ID: 23767632 [TBL] [Abstract][Full Text] [Related]
2. Parameters and scalings for dry and immersed granular flowing layers in rotating tumblers. Pignatel F; Asselin C; Krieger L; Christov IC; Ottino JM; Lueptow RM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011304. PubMed ID: 23005408 [TBL] [Abstract][Full Text] [Related]
3. Volume osmotic flows of non-homogeneous electrolyte solutions through horizontally mounted membrane. Slezak A; Jasik-Slezak J; Wasik J; Sieroń A; Pilis W Gen Physiol Biophys; 2002 Jun; 21(2):115-46. PubMed ID: 12236542 [TBL] [Abstract][Full Text] [Related]
4. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
5. Osmotic shock and the strength of viral capsids. Cordova A; Deserno M; Gelbart WM; Ben-Shaul A Biophys J; 2003 Jul; 85(1):70-4. PubMed ID: 12829465 [TBL] [Abstract][Full Text] [Related]
6. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions]. Slezak A; Grzegorczyn S Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950 [TBL] [Abstract][Full Text] [Related]
7. [Membrane transport of non-homogeneous non-electrolyte solutions: on role of volume flows in creation of concentration boundary layers in binary solutions]. Slezak A Polim Med; 2006; 36(4):37-42. PubMed ID: 17402231 [TBL] [Abstract][Full Text] [Related]
8. Effect of salts and organic additives on the solubility of proteins in aqueous solutions. Ruckenstein E; Shulgin IL Adv Colloid Interface Sci; 2006 Nov; 123-126():97-103. PubMed ID: 16814736 [TBL] [Abstract][Full Text] [Related]
9. A long-term stable and adjustable osmotic pump for small volume flow based on principles of phloem loading. Ehwald M; Adleff H; Geggier P; Ehwald R Biotechnol Bioeng; 2006 May; 94(1):37-42. PubMed ID: 16570311 [TBL] [Abstract][Full Text] [Related]
10. Osmosis in cortical collecting tubules. A theoretical and experimental analysis of the osmotic transient phenomenon. Schafer JA; Patlak CS; Andreoli TE J Gen Physiol; 1974 Aug; 64(2):201-27. PubMed ID: 4846767 [TBL] [Abstract][Full Text] [Related]
11. Efficiency gain limits of the parallel segmented inlet and outlet flow concept in analytical liquid chromatography columns suffering from radial transcolumn packing density gradients. Broeckhoven K; Desmet G J Chromatogr A; 2012 Oct; 1258():66-75. PubMed ID: 22939209 [TBL] [Abstract][Full Text] [Related]
12. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants. Hammel HT; Schlegel WM Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460 [TBL] [Abstract][Full Text] [Related]
13. Sandwich mixer-reactor: influence of the diffusion coefficient and flow rate ratios. Abonnenc M; Josserand J; Girault HH Lab Chip; 2009 Feb; 9(3):440-8. PubMed ID: 19156294 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Kim D; Darve E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051203. PubMed ID: 16802924 [TBL] [Abstract][Full Text] [Related]
15. Electro-osmotic flow in polygonal ducts. Wang CY; Chang CC Electrophoresis; 2011 Jun; 32(11):1268-72. PubMed ID: 21538403 [TBL] [Abstract][Full Text] [Related]
16. Microscale boundary conditions of the lattice Boltzmann equation method for simulating microtube flows. Zheng L; Guo Z; Shi B Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016712. PubMed ID: 23005568 [TBL] [Abstract][Full Text] [Related]
17. Revisiting the Münch pressure-flow hypothesis for long-distance transport of carbohydrates: modelling the dynamics of solute transport inside a semipermeable tube. Henton SM; Greaves AJ; Piller GJ; Minchin PE J Exp Bot; 2002 Jun; 53(373):1411-9. PubMed ID: 12021288 [TBL] [Abstract][Full Text] [Related]
18. Flow birefringence, stress optical rule and rheology of four micellar solutions with the same low shear viscosity. Decruppe JP; Ponton A Eur Phys J E Soft Matter; 2003 Mar; 10(3):201-7. PubMed ID: 15015102 [TBL] [Abstract][Full Text] [Related]
19. Estimation of thickness of concentration boundary layers by osmotic volume flux determination. Jasik-Ślęzak JS; Olszówka KM; Slęzak A Gen Physiol Biophys; 2011 Jun; 30(2):186-95. PubMed ID: 21613674 [TBL] [Abstract][Full Text] [Related]
20. Sedimentation of particles in a vigorously convecting fluid. Lavorel G; Le Bars M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046324. PubMed ID: 19905453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]