BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23767750)

  • 1. Fluid dynamics of bacterial turbulence.
    Dunkel J; Heidenreich S; Drescher K; Wensink HH; Bär M; Goldstein RE
    Phys Rev Lett; 2013 May; 110(22):228102. PubMed ID: 23767750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meso-scale turbulence in living fluids.
    Wensink HH; Dunkel J; Heidenreich S; Drescher K; Goldstein RE; Löwen H; Yeomans JM
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14308-13. PubMed ID: 22908244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport powered by bacterial turbulence.
    Kaiser A; Peshkov A; Sokolov A; ten Hagen B; Löwen H; Aranson IS
    Phys Rev Lett; 2014 Apr; 112(15):158101. PubMed ID: 24785075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confinement stabilizes a bacterial suspension into a spiral vortex.
    Wioland H; Woodhouse FG; Dunkel J; Kessler JO; Goldstein RE
    Phys Rev Lett; 2013 Jun; 110(26):268102. PubMed ID: 23848925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective swimming and the dynamics of bacterial turbulence.
    Wolgemuth CW
    Biophys J; 2008 Aug; 95(4):1564-74. PubMed ID: 18469071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective viscosity of dilute bacterial suspensions: a two-dimensional model.
    Haines BM; Aronson IS; Berlyand L; Karpeev DA
    Phys Biol; 2008 Nov; 5(4):046003. PubMed ID: 19029599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blowup as a driving mechanism of turbulence in shell models.
    Mailybaev AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053011. PubMed ID: 23767624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent turbulence in flowing bacterial suspensions.
    Secchi E; Rusconi R; Buzzaccaro S; Salek MM; Smriga S; Piazza R; Stocker R
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27307513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise.
    Ryan SD; Haines BM; Berlyand L; Ziebert F; Aranson IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):050904. PubMed ID: 21728480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamics of bacterial colonies: a model.
    Lega J; Passot T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031906. PubMed ID: 12689100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model.
    Dzwinel W; Yuen DA; Boryczko K
    J Mol Model; 2002 Jan; 8(1):33-43. PubMed ID: 12111400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective interactions between colloidal particles suspended in a bath of swimming cells.
    Angelani L; Maggi C; Bernardini ML; Rizzo A; Di Leonardo R
    Phys Rev Lett; 2011 Sep; 107(13):138302. PubMed ID: 22026908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering of vertically constrained passive particles in homogeneous isotropic turbulence.
    De Pietro M; van Hinsberg MA; Biferale L; Clercx HJ; Perlekar P; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053002. PubMed ID: 26066244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic correlations in multiparticle collision dynamics fluids.
    Huang CC; Gompper G; Winkler RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056711. PubMed ID: 23214910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical properties of collective motion in suspensions of bacteria.
    Sokolov A; Aranson IS
    Phys Rev Lett; 2012 Dec; 109(24):248109. PubMed ID: 23368392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body dynamics and hydrodynamics of swimming fish larvae: a computational study.
    Li G; Müller UK; van Leeuwen JL; Liu H
    J Exp Biol; 2012 Nov; 215(Pt 22):4015-33. PubMed ID: 23100489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic length-scale selection in microswimmer suspensions.
    Heidenreich S; Dunkel J; Klapp SH; Bär M
    Phys Rev E; 2016 Aug; 94(2-1):020601. PubMed ID: 27627229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of viscosity in suspension of swimming bacteria.
    Sokolov A; Aranson IS
    Phys Rev Lett; 2009 Oct; 103(14):148101. PubMed ID: 19905604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How colloid-colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation study in alumina suspensions.
    Laganapan AM; Mouas M; Videcoq A; Cerbelaud M; Bienia M; Bowen P; Ferrando R
    J Colloid Interface Sci; 2015 Nov; 458():241-6. PubMed ID: 26232284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instability of expanding bacterial droplets.
    Sokolov A; Rubio LD; Brady JF; Aranson IS
    Nat Commun; 2018 Apr; 9(1):1322. PubMed ID: 29615618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.