These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23767768)

  • 41. High-Throughput, Off-Chip Microdroplet Generator Enabled by a Spinning Conical Frustum.
    Tang SY; Wang K; Fan K; Feng Z; Zhang Y; Zhao Q; Yun G; Yuan D; Jiang L; Li M; Li W
    Anal Chem; 2019 Mar; 91(5):3725-3732. PubMed ID: 30747514
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry.
    Toprakcioglu Z; Levin A; Knowles TPJ
    Biomacromolecules; 2017 Nov; 18(11):3642-3651. PubMed ID: 28959882
    [TBL] [Abstract][Full Text] [Related]  

  • 43. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices.
    Fidalgo LM; Whyte G; Bratton D; Kaminski CF; Abell C; Huck WT
    Angew Chem Int Ed Engl; 2008; 47(11):2042-5. PubMed ID: 18264960
    [No Abstract]   [Full Text] [Related]  

  • 44. High throughput production of single core double emulsions in a parallelized microfluidic device.
    Romanowsky MB; Abate AR; Rotem A; Holtze C; Weitz DA
    Lab Chip; 2012 Feb; 12(4):802-7. PubMed ID: 22222423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator.
    Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M
    Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integrated microfluidic system capable of size-specific droplet generation with size-dependent droplet separation.
    Lee S; Hong SJ; Yoo HJ; Ahn JH; Cho DI
    J Biomed Nanotechnol; 2013 Jun; 9(6):944-8. PubMed ID: 23858958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS.
    Moon H; Wheeler AR; Garrell RL; Loo JA; Kim CJ
    Lab Chip; 2006 Sep; 6(9):1213-9. PubMed ID: 16929401
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection.
    Shameli SM; Elbuken C; Ou J; Ren CL; Pawliszyn J
    Electrophoresis; 2011 Feb; 32(3-4):333-9. PubMed ID: 21298660
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Possible oriented transition of multiple-emulsion globules with asymmetric internal structures in a microfluidic constriction.
    Wang J; Li X; Wang X; Guan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052302. PubMed ID: 25353795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfluidic Controlled Mass-Transfer and Buckling for Easy Fabrication of Polymeric Helical Fibers.
    Zhu A; Guo M
    Macromol Rapid Commun; 2016 Mar; 37(5):426-32. PubMed ID: 26762293
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic melt emulsification for encapsulation and release of actives.
    Sun BJ; Shum HC; Holtze C; Weitz DA
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3411-6. PubMed ID: 21082834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mastering a double emulsion in a simple co-flow microfluidic to generate complex polymersomes.
    Perro A; Nicolet C; Angly J; Lecommandoux S; Le Meins JF; Colin A
    Langmuir; 2011 Jul; 27(14):9034-42. PubMed ID: 21082804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Droplet microfluidics driven by gradients of confinement.
    Dangla R; Kayi SC; Baroud CN
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):853-8. PubMed ID: 23284169
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrasound-assisted production and optimization of mini-emulsions in a microfluidic chip in continuous-flow.
    Nieves E; Vite G; Kozina A; Olguin LF
    Ultrason Sonochem; 2021 Jun; 74():105556. PubMed ID: 33915482
    [TBL] [Abstract][Full Text] [Related]  

  • 55. One-Step Generation of Multisomes from Lipid-Stabilized Double Emulsions.
    Czekalska MA; Jacobs AMJ; Toprakcioglu Z; Kong L; Baumann KN; Gang H; Zubaite G; Ye R; Mu B; Levin A; Huck WTS; Knowles TPJ
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6739-6747. PubMed ID: 33522221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Droplet actuation in an electrified microfluidic network.
    Wehking JD; Kumar R
    Lab Chip; 2015 Feb; 15(3):793-801. PubMed ID: 25435073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production.
    Teston E; Hingot V; Faugeras V; Errico C; Bezagu M; Tanter M; Couture O
    Biomed Microdevices; 2018 Oct; 20(4):94. PubMed ID: 30377821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions.
    Hou L; Ren Y; Jia Y; Deng X; Liu W; Feng X; Jiang H
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12282-12289. PubMed ID: 28345345
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controlled Generation of Ultrathin-Shell Double Emulsions and Studies on Their Stability.
    Zhao CX; Chen D; Hui Y; Weitz DA; Middelberg APJ
    Chemphyschem; 2017 May; 18(10):1393-1399. PubMed ID: 28111852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.