BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23767802)

  • 1. Interpenetration, porosity, and high-pressure gas adsorption in Zn4O(2,6-naphthalene dicarboxylate)3.
    Feldblyum JI; Dutta D; Wong-Foy AG; Dailly A; Imirzian J; Gidley DW; Matzger AJ
    Langmuir; 2013 Jun; 29(25):8146-53. PubMed ID: 23767802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption.
    Feldblyum JI; Wong-Foy AG; Matzger AJ
    Chem Commun (Camb); 2012 Oct; 48(79):9828-30. PubMed ID: 22930156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design.
    Prasad TK; Suh MP
    Chemistry; 2012 Jul; 18(28):8673-80. PubMed ID: 22678955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers.
    Sim J; Yim H; Ko N; Choi SB; Oh Y; Park HJ; Park S; Kim J
    Dalton Trans; 2014 Dec; 43(48):18017-24. PubMed ID: 25351165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filling pore space in a microporous coordination polymer to improve methane storage performance.
    Tran LD; Feldblyum JI; Wong-Foy AG; Matzger AJ
    Langmuir; 2015 Feb; 31(7):2211-7. PubMed ID: 25621891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh porosity in metal-organic frameworks.
    Furukawa H; Ko N; Go YB; Aratani N; Choi SB; Choi E; Yazaydin AO; Snurr RQ; O'Keeffe M; Kim J; Yaghi OM
    Science; 2010 Jul; 329(5990):424-8. PubMed ID: 20595583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of functionalized groups on gas-adsorption properties: syntheses of functionalized microporous metal-organic frameworks and their high gas-storage capacity.
    Wang Y; Tan C; Sun Z; Xue Z; Zhu Q; Shen C; Wen Y; Hu S; Wang Y; Sheng T; Wu X
    Chemistry; 2014 Jan; 20(5):1341-8. PubMed ID: 24458914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A framework for predicting surface areas in microporous coordination polymers.
    Schnobrich JK; Koh K; Sura KN; Matzger AJ
    Langmuir; 2010 Apr; 26(8):5808-14. PubMed ID: 20143886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature.
    Millward AR; Yaghi OM
    J Am Chem Soc; 2005 Dec; 127(51):17998-9. PubMed ID: 16366539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linker-directed vertex desymmetrization for the production of coordination polymers with high porosity.
    Schnobrich JK; Lebel O; Cychosz KA; Dailly A; Wong-Foy AG; Matzger AJ
    J Am Chem Soc; 2010 Oct; 132(39):13941-8. PubMed ID: 20839886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water sensitivity in Zn4O-based MOFs is structure and history dependent.
    Guo P; Dutta D; Wong-Foy AG; Gidley DW; Matzger AJ
    J Am Chem Soc; 2015 Feb; 137(7):2651-7. PubMed ID: 25642977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling.
    Poirier E; Dailly A
    Nanotechnology; 2009 May; 20(20):204006. PubMed ID: 19420654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches.
    Meisner GP; Hu Q
    Nanotechnology; 2009 May; 20(20):204023. PubMed ID: 19420671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predesign and systematic synthesis of 11 highly porous coordination polymers with unprecedented topology.
    Duan J; Higuchi M; Kitagawa S
    Inorg Chem; 2015 Feb; 54(4):1645-9. PubMed ID: 25594909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A route to high surface area, porosity and inclusion of large molecules in crystals.
    Chae HK; Siberio-Pérez DY; Kim J; Go Y; Eddaoudi M; Matzger AJ; O'Keeffe M; Yaghi OM
    Nature; 2004 Feb; 427(6974):523-7. PubMed ID: 14765190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular screening of metal-organic frameworks for CO2 storage.
    Babarao R; Jiang J
    Langmuir; 2008 Jun; 24(12):6270-8. PubMed ID: 18484751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of phase-pure interpenetrated MOF-5 and its gas sorption properties.
    Kim H; Das S; Kim MG; Dybtsev DN; Kim Y; Kim K
    Inorg Chem; 2011 Apr; 50(8):3691-6. PubMed ID: 21413727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing selective CO2 adsorption via chemical reduction of a redox-active metal-organic framework.
    Leong CF; Faust TB; Turner P; Usov PM; Kepert CJ; Babarao R; Thornton AW; D'Alessandro DM
    Dalton Trans; 2013 Jul; 42(27):9831-9. PubMed ID: 23519323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1.
    Feldblyum JI; Liu M; Gidley DW; Matzger AJ
    J Am Chem Soc; 2011 Nov; 133(45):18257-63. PubMed ID: 22011056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microporous poly(Schiff base) constructed from tetraphenyladamantane units for adsorption of gases and organic vapors.
    Li G; Zhang B; Wang Z
    Macromol Rapid Commun; 2014 May; 35(10):971-5. PubMed ID: 24596274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.