These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23767913)

  • 1. Unconventional application of conventional enzymatic substrate: first fluorogenic immunoassay based on enzymatic formation of quantum dots.
    Malashikhina N; Garai-Ibabe G; Pavlov V
    Anal Chem; 2013 Jul; 85(14):6866-70. PubMed ID: 23767913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence detection of adenosine-5'-triphosphate and alkaline phosphatase based on the generation of CdS quantum dots.
    Liu S; Wang X; Pang S; Na W; Yan X; Su X
    Anal Chim Acta; 2014 May; 827():103-10. PubMed ID: 24833001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent Ti
    Guo Z; Zhu X; Wang S; Lei C; Huang Y; Nie Z; Yao S
    Nanoscale; 2018 Nov; 10(41):19579-19585. PubMed ID: 30324953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble MoS
    Zhong Y; Xue F; Wei P; Li R; Cao C; Yi T
    Nanoscale; 2018 Dec; 10(45):21298-21306. PubMed ID: 30422141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Cu(II)/Cu(I)-induced quantum dot-mediated fluorescence immunoassay for the sensitive determination of ethyl carbamate.
    Zhou K; Wang ZL; Luo L; Dong YZ; Yang JY; Lei HT; Wang H; Shen YD; Xu ZL
    Mikrochim Acta; 2020 Sep; 187(9):533. PubMed ID: 32870401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive detection of amifostine and alkaline phosphatase based on the growth of CdS quantum dots.
    Na W; Liu S; Liu X; Su X
    Talanta; 2015 Nov; 144():1059-64. PubMed ID: 26452927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition.
    Tang C; Qian Z; Huang Y; Xu J; Ao H; Zhao M; Zhou J; Chen J; Feng H
    Biosens Bioelectron; 2016 Sep; 83():274-80. PubMed ID: 27132001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbead QD-ELISA: Microbead ELISA Using Biocatalytic Formation of Quantum Dots for Ultra High Sensitive Optical and Electrochemical Detection.
    Grinyte R; Barroso J; Möller M; Saa L; Pavlov V
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29252-29260. PubMed ID: 27753498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quenching of graphene quantum dots fluorescence by alkaline phosphatase activity in the presence of hydroquinone diphosphate.
    Pereira da Silva Neves MM; González-García MB; Pérez-Junquera A; Hernández-Santos D; Fanjul-Bolado P
    Luminescence; 2018 May; 33(3):552-558. PubMed ID: 29356382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CdS quantum dots generated in-situ for fluorometric determination of thrombin activity.
    Saa L; Díez-Buitrago B; Briz N; Pavlov V
    Mikrochim Acta; 2019 Aug; 186(9):657. PubMed ID: 31468185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemical detection of enzymatically generated CdS nanoparticles: Application to development of immunoassay.
    Barroso J; Saa L; Grinyte R; Pavlov V
    Biosens Bioelectron; 2016 Mar; 77():323-9. PubMed ID: 26432195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a monoclonal antibody-based immunoassay for specific quantification of bovine milk alkaline phosphatase.
    Geneix N; Dufour E; Venien A; Levieux D
    J Dairy Res; 2007 Aug; 74(3):290-5. PubMed ID: 17466113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical applications of enzymatic growth of quantum dots.
    Saa L; Virel A; Sanchez-Lopez J; Pavlov V
    Chemistry; 2010 Jun; 16(21):6187-92. PubMed ID: 20432413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent identification and detection of Staphylococcus aureus with carboxymethyl chitosan/CdS quantum dots bioconjugates.
    Wang X; Du Y; Li Y; Li D; Sun R
    J Biomater Sci Polym Ed; 2011; 22(14):1881-93. PubMed ID: 20961493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 8-quinolyl phosphate as a substrate for the fluorimetric determination of alkaline phosphatase.
    Zhu X; Jiang C
    Clin Chim Acta; 2007 Feb; 377(1-2):150-3. PubMed ID: 17123497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimicking biological process to detect alkaline phosphatase activity using the vitamin B
    Upadhyay Y; Bothra S; Kumar R; Kumar Sk A; Sahoo SK
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110624. PubMed ID: 31711735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleic acid-controlled quantum dots aggregation: A label-free fluorescence turn-on strategy for alkaline phosphatase detection.
    Hu Z; Chen J; Li Y; Wang Y; Zhang Q; Hussain E; Yang M; Shahzad SA; Yu D; Yu C
    Talanta; 2017 Jul; 169():64-69. PubMed ID: 28411823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed self-assembly of Ag
    Madhu M; Chao CM; Ke CY; Hsieh MM; Tseng WL
    Anal Bioanal Chem; 2022 Feb; 414(5):1909-1919. PubMed ID: 35066603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared fluorescence probe for the determination of alkaline phosphatase.
    Liu S; Pang S; Na W; Su X
    Biosens Bioelectron; 2014 May; 55():249-54. PubMed ID: 24388906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved fluorogenic substrate for the detection of alkaline phosphatase activity.
    Park J; Kim Y
    Bioorg Med Chem Lett; 2013 Apr; 23(8):2332-5. PubMed ID: 23489631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.