These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 23768075)
1. Effects of dose-delivery time structure on biological effectiveness for therapeutic carbon-ion beams evaluated with microdosimetric kinetic model. Inaniwa T; Suzuki M; Furukawa T; Kase Y; Kanematsu N; Shirai T; Hawkins RB Radiat Res; 2013 Jul; 180(1):44-59. PubMed ID: 23768075 [TBL] [Abstract][Full Text] [Related]
2. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer. Inaniwa T; Kanematsu N; Suzuki M; Hawkins RB Phys Med Biol; 2015 May; 60(10):4105-21. PubMed ID: 25933161 [TBL] [Abstract][Full Text] [Related]
3. A Monte Carlo approach to the microdosimetric kinetic model to account for dose rate time structure effects in ion beam therapy with application in treatment planning simulations. Manganaro L; Russo G; Cirio R; Dalmasso F; Giordanengo S; Monaco V; Muraro S; Sacchi R; Vignati A; Attili A Med Phys; 2017 Apr; 44(4):1577-1589. PubMed ID: 28130821 [TBL] [Abstract][Full Text] [Related]
4. A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning. Inaniwa T; Kanematsu N Phys Med Biol; 2015 Jan; 60(1):437-51. PubMed ID: 25658007 [TBL] [Abstract][Full Text] [Related]
5. RBE-weighted dose conversions for patients with recurrent nasopharyngeal carcinoma receiving carbon-ion radiotherapy from the local effect model to the microdosimetric kinetic model. Zhang L; Wang W; Hu J; Lu J; Kong L Radiat Oncol; 2020 Dec; 15(1):277. PubMed ID: 33302998 [TBL] [Abstract][Full Text] [Related]
6. Sensitivity study of the microdosimetric kinetic model parameters for carbon ion radiotherapy. Dahle TJ; Magro G; Ytre-Hauge KS; Stokkevåg CH; Choi K; Mairani A Phys Med Biol; 2018 Nov; 63(22):225016. PubMed ID: 30418940 [TBL] [Abstract][Full Text] [Related]
7. A modified microdosimetric kinetic model for relative biological effectiveness calculation. Chen Y; Li J; Li C; Qiu R; Wu Z Phys Med Biol; 2017 Dec; 63(1):015008. PubMed ID: 29240558 [TBL] [Abstract][Full Text] [Related]
9. Dose rate dependence of the relative biological effectiveness of 103Pd for continuous low dose rate irradiation of BA1112 rhabdomyosarcoma cells in vitro relative to acute exposures. Nath R; Bongiorni P; Chen Z; Gragnano J; Rockwell S Int J Radiat Biol; 2005 Sep; 81(9):689-99. PubMed ID: 16368647 [TBL] [Abstract][Full Text] [Related]
10. Temporal lobe reactions after carbon ion radiation therapy: comparison of relative biological effectiveness-weighted tolerance doses predicted by local effect models I and IV. Gillmann C; Jäkel O; Schlampp I; Karger CP Int J Radiat Oncol Biol Phys; 2014 Apr; 88(5):1136-41. PubMed ID: 24661667 [TBL] [Abstract][Full Text] [Related]
11. Radiobiological effects of the interruption time with Monte Carlo Simulation on multiple fields in photon beams. Nakano H; Kawahara D; Tanabe S; Utsunomiya S; Takizawa T; Sakai M; Saito H; Ohta A; Kaidu M; Ishikawa H J Appl Clin Med Phys; 2020 Dec; 21(12):288-294. PubMed ID: 33270984 [TBL] [Abstract][Full Text] [Related]
12. Effect of Irradiation Time on Biological Effectiveness and Tumor Control Probability in Proton Therapy. Takei H; Inaniwa T Int J Radiat Oncol Biol Phys; 2019 Sep; 105(1):222-229. PubMed ID: 31085286 [TBL] [Abstract][Full Text] [Related]
13. The relative biological effectiveness for carbon, nitrogen, and oxygen ion beams using passive and scanning techniques evaluated with fully 3D silicon microdosimeters. Tran LT; Bolst D; Guatelli S; Pogossov A; Petasecca M; Lerch MLF; Chartier L; Prokopovich DA; Reinhard MI; Povoli M; Kok A; Perevertaylo VL; Matsufuji N; Kanai T; Jackson M; Rosenfeld AB Med Phys; 2018 May; 45(5):2299-2308. PubMed ID: 29572856 [TBL] [Abstract][Full Text] [Related]
14. Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Inaniwa T; Furukawa T; Kase Y; Matsufuji N; Toshito T; Matsumoto Y; Furusawa Y; Noda K Phys Med Biol; 2010 Nov; 55(22):6721-37. PubMed ID: 21030747 [TBL] [Abstract][Full Text] [Related]
15. Comparison of biological effectiveness of carbon-ion beams in Japan and Germany. Uzawa A; Ando K; Koike S; Furusawa Y; Matsumoto Y; Takai N; Hirayama R; Watanabe M; Scholz M; Elsässer T; Peschke P Int J Radiat Oncol Biol Phys; 2009 Apr; 73(5):1545-51. PubMed ID: 19306751 [TBL] [Abstract][Full Text] [Related]
16. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure. Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301 [TBL] [Abstract][Full Text] [Related]
17. Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy. Fossati P; Molinelli S; Matsufuji N; Ciocca M; Mirandola A; Mairani A; Mizoe J; Hasegawa A; Imai R; Kamada T; Orecchia R; Tsujii H Phys Med Biol; 2012 Nov; 57(22):7543-54. PubMed ID: 23104051 [TBL] [Abstract][Full Text] [Related]
18. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy. Takada K; Sato T; Kumada H; Koketsu J; Takei H; Sakurai H; Sakae T J Radiat Res; 2018 Jan; 59(1):91-99. PubMed ID: 29087492 [TBL] [Abstract][Full Text] [Related]
19. Mapping of RBE-weighted doses between HIMAC- and LEM-Based treatment planning systems for carbon ion therapy. Steinsträter O; Grün R; Scholz U; Friedrich T; Durante M; Scholz M Int J Radiat Oncol Biol Phys; 2012 Nov; 84(3):854-60. PubMed ID: 22483698 [TBL] [Abstract][Full Text] [Related]
20. A mechanism-based approach to predict the relative biological effectiveness of protons and carbon ions in radiation therapy. Frese MC; Yu VK; Stewart RD; Carlson DJ Int J Radiat Oncol Biol Phys; 2012 May; 83(1):442-50. PubMed ID: 22099045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]