These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23768118)

  • 1. The Beverton-Holt q-difference equation.
    Bohner M; Chieochan R
    J Biol Dyn; 2013; 7(1):86-95. PubMed ID: 23768118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Beverton-Hold model on isolated time scales.
    Bohner M; Mesquita J; Streipert S
    Math Biosci Eng; 2022 Aug; 19(11):11693-11716. PubMed ID: 36124609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal harvesting policy for the Beverton--Holt model.
    Bohner M; Streipert S
    Math Biosci Eng; 2016 Aug; 13(4):673-695. PubMed ID: 27775381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global behavior of solutions of a periodically forced Sigmoid Beverton-Holt model.
    Harry AJ; Kent CM; Kocic VL
    J Biol Dyn; 2012; 6():212-34. PubMed ID: 22873588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic difference equations, population biology and the Cushing-Henson conjectures.
    Elaydi S; Sacker RJ
    Math Biosci; 2006 May; 201(1-2):195-207. PubMed ID: 16466753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An alternative delayed population growth difference equation model.
    Streipert SH; Wolkowicz GSK
    J Math Biol; 2021 Aug; 83(3):25. PubMed ID: 34363540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Difference equations with the Allee effect and the periodic Sigmoid Beverton-Holt equation revisited.
    Gaut GR; Goldring K; Grogan F; Haskell C; Sacker RJ
    J Biol Dyn; 2012; 6():1019-33. PubMed ID: 22928770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A note on semi-discrete modelling in the life sciences.
    Mailleret L; Lemesle V
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1908):4779-99. PubMed ID: 19884180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stage-structured discrete-time models for interacting wild and sterile mosquitoes with beverton-holt survivability.
    Li Y; Li J
    Math Biosci Eng; 2019 Jan; 16(2):572-602. PubMed ID: 30861657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On discrete time Beverton-Holt population model with fuzzy environment.
    Zhang QH; Lin FB; Zhong XY
    Math Biosci Eng; 2019 Feb; 16(3):1471-1488. PubMed ID: 30947429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A note on the nonautonomous delay Beverton-Holt model.
    Kocic VL
    J Biol Dyn; 2010 Mar; 4(2):131-9. PubMed ID: 22876982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting attenuant and resonant 2-cycles in periodically forced discrete-time two-species population models.
    Morena MA; Franke JE
    J Biol Dyn; 2012; 6():782-812. PubMed ID: 22873617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifurcations in a discrete time model composed of Beverton-Holt function and Ricker function.
    Shang J; Li B; Barnard MR
    Math Biosci; 2015 May; 263():161-8. PubMed ID: 25765885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Beverton-Holt model with periodic and conditional harvesting.
    AlSharawi Z; Rhouma MB
    J Biol Dyn; 2009 Sep; 3(5):463-78. PubMed ID: 22880895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difference equations as models of evolutionary population dynamics.
    Cushing JM
    J Biol Dyn; 2019 Dec; 13(1):103-127. PubMed ID: 30714512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivation and dynamics of discrete population models with distributed delay in reproduction.
    Streipert SH; Wolkowicz GSK
    Math Biosci; 2024 Oct; 376():109279. PubMed ID: 39147015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions to nonstationary community theory.
    Chesson P
    J Biol Dyn; 2019; 13(sup1):123-150. PubMed ID: 30270753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of band-pass phenotypic resistance in a modified Beverton-Holt framework.
    Nemzer LR
    Math Biosci; 2014 Jun; 252():7-13. PubMed ID: 24631919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signature function for predicting resonant and attenuant population 2-cycles.
    Franke JE; Yakubu AA
    Bull Math Biol; 2006 Nov; 68(8):2069-104. PubMed ID: 16865608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technique to derive discrete population models with delayed growth.
    Streipert SH; Wolkowicz GSK
    J Biol Dyn; 2023 Dec; 17(1):2244987. PubMed ID: 37647506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.