These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23768363)

  • 1. Effects of starch on nitrous acid-induced oxidation of kaempferol and inhibition of α-amylase-catalysed digestion of starch by kaempferol under conditions simulating the stomach and the intestine.
    Takahama U; Hirota S
    Food Chem; 2013 Nov; 141(1):313-9. PubMed ID: 23768363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of starch with a cyanidin-catechin pigment (vignacyanidin) isolated from Vigna angularis bean.
    Takahama U; Yamauchi R; Hirota S
    Food Chem; 2013 Dec; 141(3):2600-5. PubMed ID: 23871000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of flavonoids with α-amylase and starch slowing down its digestion.
    Takahama U; Hirota S
    Food Funct; 2018 Feb; 9(2):677-687. PubMed ID: 29292445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the influence of amylose-LPC complexation on the extent of wheat starch digestibility by size-exclusion chromatography.
    Ahmadi-Abhari S; Woortman AJ; Hamer RJ; Loos K
    Food Chem; 2013 Dec; 141(4):4318-23. PubMed ID: 23993621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of buckwheat starch digestion by the formation of starch/bile salt complexes: possibility of its occurrence in the intestine.
    Takahama U; Hirota S
    J Agric Food Chem; 2011 Jun; 59(11):6277-83. PubMed ID: 21528929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of amylose-procyanidin complexes to slower starch digestion of red-colored rice prepared by cooking with adzuki bean.
    Morina F; Hirota S; Takahama U
    Int J Food Sci Nutr; 2020 Sep; 71(6):715-725. PubMed ID: 31986936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of enzymic digestion of amylose by free fatty acids in vitro contributes to resistant starch formation.
    Crowe TC; Seligman SA; Copeland L
    J Nutr; 2000 Aug; 130(8):2006-8. PubMed ID: 10917916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches.
    Lopez-Rubio A; Flanagan BM; Shrestha AK; Gidley MJ; Gilbert EP
    Biomacromolecules; 2008 Jul; 9(7):1951-8. PubMed ID: 18529077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis.
    Kadziola A; Søgaard M; Svensson B; Haser R
    J Mol Biol; 1998 Apr; 278(1):205-17. PubMed ID: 9571044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis.
    Bhattarai RR; Dhital S; Wu P; Chen XD; Gidley MJ
    Food Funct; 2017 Jul; 8(7):2573-2582. PubMed ID: 28682366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hibiscus acid as an inhibitor of starch digestion in the Caco-2 cell model system.
    Hansawasdi C; Kawabata J; Kasai T
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):2087-9. PubMed ID: 11676026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Pancreatin-Induced Digestion of Cooked Rice Starch by Adzuki (Vigana angularis) Bean Flavonoids and the Possibility of a Decrease in the Inhibitory Effects in the Stomach.
    Hirota S; Takahama U
    J Agric Food Chem; 2017 Mar; 65(10):2172-2179. PubMed ID: 28219009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of starch digestion by flavonoids: Role of flavonoid-amylase binding kinetics.
    D'Costa AS; Bordenave N
    Food Chem; 2021 Mar; 341(Pt 2):128256. PubMed ID: 33035827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours.
    Mkandawire NL; Kaufman RC; Bean SR; Weller CL; Jackson DS; Rose DJ
    J Agric Food Chem; 2013 May; 61(18):4448-54. PubMed ID: 23581620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content.
    Brewer LR; Cai L; Shi YC
    J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and enzyme kinetic studies of retrograded starch: Inhibition of α-amylase and consequences for intestinal digestion of starch.
    Patel H; Royall PG; Gaisford S; Williams GR; Edwards CH; Warren FJ; Flanagan BM; Ellis PR; Butterworth PJ
    Carbohydr Polym; 2017 May; 164():154-161. PubMed ID: 28325312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of quercetin by salivary components. Quercetin-dependent reduction of salivary nitrite under acidic conditions producing nitric oxide.
    Takahama U; Oniki T; Hirota S
    J Agric Food Chem; 2002 Jul; 50(15):4317-22. PubMed ID: 12105964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermostable maltose-tolerant alpha-amylase from Aspergillus tamarii.
    Moreira FG; Lenartovicz V; Peralta RM
    J Basic Microbiol; 2004; 44(1):29-35. PubMed ID: 14768025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of amylose-LPC complex formation on the susceptibility of wheat starch to amylase.
    Ahmadi-Abhari S; Woortman AJ; Oudhuis AA; Hamer RJ; Loos K
    Carbohydr Polym; 2013 Sep; 97(2):436-40. PubMed ID: 23911468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel alpha-glucosidase from the moss Scopelophila cataractae.
    Yamasaki Y; Nakashima S; Konno H
    Acta Biochim Pol; 2007; 54(2):401-6. PubMed ID: 17502927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.