These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23768364)

  • 1. Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols.
    Xi J; Xue Y; Xu Y; Shen Y
    Food Chem; 2013 Nov; 141(1):320-6. PubMed ID: 23768364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction.
    Xi J; Shen D; Zhao S; Lu B; Li Y; Zhang R
    Int J Pharm; 2009 Dec; 382(1-2):139-43. PubMed ID: 19715745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic investigation for extraction and separation of polyphenols in tea leaves by magnetic ionic liquids.
    Feng X; Zhang W; Zhang T; Yao S
    J Sci Food Agric; 2018 Sep; 98(12):4550-4560. PubMed ID: 29485198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the microwave-assisted extraction conditions of tea polyphenols from green tea.
    Li DC; Jiang JG
    Int J Food Sci Nutr; 2010 Dec; 61(8):837-45. PubMed ID: 20701548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles.
    Unachukwu UJ; Ahmed S; Kavalier A; Lyles JT; Kennelly EJ
    J Food Sci; 2010 Aug; 75(6):C541-8. PubMed ID: 20722909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling of solid-phase tea waste extraction for the removal of manganese from food samples by using artificial neural network approach.
    Khajeh M; Barkhordar A
    Food Chem; 2013 Nov; 141(2):712-7. PubMed ID: 23790838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of ultrasound-assisted extraction of phenolic compounds from grapefruit (Citrus paradisi Macf.) leaves via D-optimal design and artificial neural network design with categorical and quantitative variables.
    Ciğeroğlu Z; Aras Ö; Pinto CA; Bayramoglu M; Kırbaşlar Şİ; Lorenzo JM; Barba FJ; Saraiva JA; Şahin S
    J Sci Food Agric; 2018 Sep; 98(12):4584-4596. PubMed ID: 29508393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of in vitro antioxidant activities and bioactive components of green tea extracts by different extraction methods.
    Jun X; Deji S; Ye L; Rui Z
    Int J Pharm; 2011 Apr; 408(1-2):97-101. PubMed ID: 21310224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars.
    Kerio LC; Wachira FN; Wanyoko JK; Rotich MK
    Food Chem; 2013 Feb; 136(3-4):1405-13. PubMed ID: 23194541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response Surface Optimization of Supercritical Carbon Dioxide Extraction of Tea Polyphenols from Green Tea Scraps.
    Wang W; Han S; Zha X; Cheng J; Song J; Jiao Z
    J AOAC Int; 2019 Mar; 102(2):451-456. PubMed ID: 30305199
    [No Abstract]   [Full Text] [Related]  

  • 11. Separation of major catechins from green tea by ultrahigh pressure extraction.
    Jun X; Shuo Z; Bingbing L; Rui Z; Ye L; Deji S; Guofeng Z
    Int J Pharm; 2010 Feb; 386(1-2):229-31. PubMed ID: 19874878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted water extraction of green tea polyphenols.
    Nkhili E; Tomao V; El Hajji H; El Boustani ES; Chemat F; Dangles O
    Phytochem Anal; 2009; 20(5):408-15. PubMed ID: 19609884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Camellia sinensis (L.) O. Kuntze on Microcystis aeruginosa and isolation of the inhibition factors.
    Lu Y; Wang J; Yu Y; Su W; Kong F
    Biotechnol Lett; 2013 Jul; 35(7):1029-34. PubMed ID: 23584804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of artificial neural network (ANN) for the development of bioprocess using Pinus roxburghii fallen foliages for the release of polyphenols and reducing sugars.
    Vats S; Negi S
    Bioresour Technol; 2013 Jul; 140():392-8. PubMed ID: 23711945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction and removal of caffeine from green tea by ultrasonic-enhanced supercritical fluid.
    Tang WQ; Li DC; Lv YX; Jiang JG
    J Food Sci; 2010 May; 75(4):C363-8. PubMed ID: 20546396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of tyrosinase inhibition activity of ultrasonic-extracted polysaccharides from longan fruit pericarp.
    Yang B; Zhao M; Jiang Y
    Food Chem; 2008 Sep; 110(2):294-300. PubMed ID: 26049219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of ultra-sonication and agitation extraction techniques on bioactive metabolites of green tea extract.
    Das PR; Eun JB
    Food Chem; 2018 Jul; 253():22-29. PubMed ID: 29502824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound-assisted extraction of phenolics from wine lees: modeling, optimization and stability of extracts during storage.
    Tao Y; Wu D; Zhang QA; Sun DW
    Ultrason Sonochem; 2014 Mar; 21(2):706-15. PubMed ID: 24090833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Back-propagation neural network and genetic algorithm for multi-objective optimization of extraction technology of Cortex Fraxini].
    Yang M; Yu MY; Shi XF; Teng YP
    Zhongguo Zhong Yao Za Zhi; 2008 Nov; 33(22):2622-6. PubMed ID: 19216156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and optimization of a semicontinuous hot-cold extraction of polyphenols from grape pomace.
    Monrad JK; Srinivas K; Howard LR; King JW
    J Agric Food Chem; 2012 Jun; 60(22):5571-82. PubMed ID: 22578157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.